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Abstract

We use the technique of information relaxation to develop a duality-driven iterative
approach to obtaining and improving confidence interval estimates for the true value of
finite-horizon stochastic dynamic programming problems. We show that the sequence
of dual value estimates yielded from the proposed approach in principle monotonically
converges to the true value function in a finite number of dual iterations. Aiming
to overcome the curse of dimensionality in various applications, we also introduce a
regression-based Monte Carlo algorithm for implementation. The new approach can be
used not only to assess the quality of heuristic policies, but also to improve them if we
find that their duality gap is large. We obtain the convergence rate of our Monte Carlo
method in terms of the amounts of both basis functions and the sampled states. Finally,
we demonstrate the effectiveness of our method in an optimal order execution problem
with market friction and in an inventory management problem in the presence of lost
sale and lead time. Both examples are well known in the literature to be difficult to
solve for optimality. The experiments show that our method can significantly improve
the heuristics suggested in the literature and obtain new policies with a satisfactory
performance guarantee.

Keywords: stochastic dynamic programming; information relaxation; duality; regression
based Monte Carlo method; optimal execution; inventory management.

1 Introduction

Stochastic dynamic programming (SDP) provides a powerful framework for modeling and
solving decision-making problems under a random environment in which uncertainty is re-
solved and actions are taken sequentially over time. Recently it also has become increas-
ingly important to help us understand the general principle behind reinforcement learning,
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a rapidly developing area of artificial intelligence. The Bellman backward recursion fully
characterizes the structure of the optimal policies of an SDP problem. However, hampered
by the curse of dimensionality, it is practically infeasible to implement this principle of opti-
mality to derive the solutions for many high dimensional applications. Hence, people often
have to settle for a suboptimal control policy that strikes a reasonable balance between con-
venient implementation and adequate performance. This practice naturally gives rise to the
following two research questions:

1. How can we assess the quality of a given control policy?

2. If we know the performance of a policy is not satisfactory, do we have a systematic
way to improve it?

Motivated by these two questions, especially the second one, we develop in this paper a
duality-driven iterative approach to obtaining and improving confidence interval estimates
for the true value of an SDP problem with finite time horizon. This new approach stems
from information relaxation and the corresponding dual formulation in the SDP literature.
Take a cost minimization problem as an example. Within the dual framework laid out in
Brown, Smith, and Sun (2010), we relax the admissible constraint that requires policies to
be dependent only upon the information up to the moment when a decision is made, and
meanwhile impose a penalty in the problem’s objective function that punishes any violations
of the admissible constraint. This two-step construction results in a lower bound on the
optimal expected cost.

The above duality bounds enable us to assess the performance of a candidate policy.
Fixing the policy we are interested in assessing, we can use standard simulation techniques
to estimate the expected costs under this policy (refer to, for example, Powell (2011) for
other related statistical learning approaches for policy evaluation). Note that every policy
is suboptimal and thus produces a value higher than the optimal cost. If the difference,
referred to as the duality gap hereafter, between the expected value of this policy and the
aforementioned lower bound from the dual formulation is tight, we can assert that the policy
must be close to the optimality. A variety of applications of this duality based policy assess-
ment can be found, just to name a few, in Lai, Margot and Secomandi (2010) and Lai et al.
(2011) for natural gas storage valuation, Brown and Smith (2011), Haugh and Wang (2014),
and Haugh, Iyengar and Wang (2016) for dynamic portfolio investment, Brown, Smith, and
Sun (2010) and Brown and Smith (2014) for inventory management, Goodson, Ohlmann
and Thomas (2013) for multi-vehicle routing, Brown and Smith (2014) for revenue manage-
ment, Kim and Lim (2016) for robust multi-armed bandits, Devalkar, Anupindi and Sinha
(2011) for an integrated optimization problem of procurement, processing, and trade of com-
modities, Balseiro, Brown and Chen (2018) for stochastic scheduling problems, Balseiro and
Brown (2019) for stochastic knapsack problems, stochastic scheduling on parallel machines,
and sequential search problems, and most recently, Brown and Smith (2020) for dynamic
selection problems.

Complementing the applications of the SDP duality in policy assessments, the primary
focus of our work is how to improve a candidate policy if we find that its duality gap is not
small. The paper makes two contributions to the literature on SDP duality. First, we propose
a new duality-driven dynamic programming (DDP) algorithm that is capable of iteratively
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improving the estimates of the dual value to an SDP problem. In each iteration, the algorithm
utilizes the dual values from the last iteration as inputs to construct the penalty and then
outputs new dual values for the next round. We manage to show that the sequence of
lower bound estimates that result from the proposed algorithm monotonically converges from
below to the true value function of an SDP problem with a cost minimization objective. More
importantly, for problems with a finite time horizon, we also prove that such convergence will
be accomplished in a finite number of dual iterations and the optimal control can thereby be
obtained on the basis of the dual value function that is output at the termination of the DDP
algorithm. With these important theoretical underpinnings, the new algorithm systematizes
the improvement of a policy with a large duality gap, which addresses the second issue
imposed at the beginning of the paper that remains largely unanswered in the SDP duality
literature. We demonstrate this convergence result by applying the DDP algorithm to the
linear-quadratic control (LQC) problem, one of the most fundamental problems in control
theory. Corroborating the above theoretical discovery, the calculation reveals that, from a
suboptimal policy, our DDP algorithm can yield the optimal linear policy within just two
dual iterations.

The second contribution of this paper is that we present a high-dimensional numerical
implementation approach for DDP and develop its related performance guarantee. To over-
come the curse of dimensionality in the high-dimensional setup, we combine the regression
architecture with Monte Carlo simulation to extrapolate the dual estimates observed on the
sampled states to the entire state space for approximating dual functions in each iteration
of the DDP algorithm. The dual bound yielded from this algorithm can help us build up
effective confidence interval estimates on the value of the SDP problem, from which we
can determine the optimality of the improved policy. Though the approach shares some
common features with the existing simulation and approximation methods in the study of
approximate dynamic programming (see, e.g., Bertsekas and Tsitsklis (1996), Longstaff and
Schwartz (2001), Tsitsiklis and Van Roy (1999, 2001), Powell (2011)), the special structure
of the dual formulation distinguishes it from the others in several key aspects:

• Compared with the Monte Carlo duality in American option pricing (see, e.g., Rogers
(2002), Haugh and Kogan (2004), Andersen and Broadie (2004), Chen and Glasserman
(2007), and Desai, de Farias, and Moallemi (2012b)), one additional layer of complexity
in dealing with a general dynamic program is that the policies taken by the decision
maker will affect the evolution of the underlying system. This leads us to face the
challenging tradeoff between exploration and exploitation when we try to numerically
implement the DDP algorithm; see the counterexample in Appendix D.2. To avoid the
exploration pitfall, we introduce a device called a state sampler into our Monte Carlo
approach and analyze its role in determining the convergence of the method.

• To determine the dual value in each iteration, the DDP algorithm requires solving an
optimization problem before taking expectation. Along one sample path of random-
ness, such an optimization problem is deterministic. This salient characteristic is in
stark contrast to the classical value iteration algorithm widely used in dynamic pro-
gramming where one has to solve stochastic programs to optimize an expected value.
As shown in the discussion on the LQC problem (Sec. 3.2) and the numerical examples
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(Sec. 5), the vast research base of deterministic optimization enables us to have a high
degree of flexibility in choosing effective numerical procedures for our DDP algorithm.

• Another advantage of solving optimization inside expectation is that it allows us to
deploy parallel computing to accelerate the execution of the DDP algorithm. In par-
ticular, we can simulate different groups of sample paths in parallel processors and
solve the corresponding optimization programs simultaneously; then we can take the
average across all the outcomes collected from the parallel processors to compute the
dual values. The parallelization grants scalability to the DDP algorithm.

To develop a performance guarantee for the above regression-based simulation approach,
we characterize its rate of convergence to the true value in terms of the amounts of both
basis functions for the purpose of function approximation and the sampled states on which
the dual values are estimated. Our analysis reveals an intriguing trade-off between model
complexity and simulation efforts. More specifically, the number of sampled states should
be proportionally sufficient relative to the number of basis functions; otherwise, the effect of
model overfitting may cause the outcome from the DDP algorithm to diverge, rather than
converge, even if both amounts tend to infinity. The paper quantifies a relative growth order
between the numbers of the sampled states and basis functions as a sufficient condition to
warrant the convergence.

We demonstrate the effectiveness of our DDP algorithm with two numerical examples.
One is about portfolio execution (a variant of Bertsimas and Lo (1998)) and the other is
about inventory management (Zipkin (2008a,b)). Both examples are widely known in the
literature to be intractable due to the constraints imposed on the policies and the com-
plex high-dimensional dynamics. Using the above DDP algorithm, we significantly improve
a variety of conventional heuristics suggested in the literature, such as lookahead and lin-
ear programming approximation, to yield new policies with satisfactory performance. It
is worthwhile mentioning that, aiming at the convex structure in these examples, we ap-
ply difference-of-convex (DC) programming to solve the inner optimization problem in their
dual formulation. The tightness of the resulted confidence intervals strongly indicates this
programming technique works very effectively for convex control problems.

As noted earlier, the paper extends and complements the literature on information re-
laxation and SDP dualities initiated by Brown, Smith, and Sun (2010). Along this research
line, Brown and Smith (2014) consider dynamic programs that have a convex structure and
use the first-order linear approximations of value functions to construct gradient penalties
that can provide tight bounds. Brown and Haugh (2017) and Ye and Zhou (2015) generalize
the information relaxation approach for calculating performance bounds for infinite horizon
Markov decision processes and continuous-time controls, respectively. Desai, de Farias, and
Moallemi (2013) compare the duality in the perfect information relaxation (called martingale
duality in their paper) with the approximate linear programming approach in the literature
(e.g., Schweitzer and Seidmann (1985), de Farias and Van Roy (2003, 2004)). They find
that the former one can produce tighter lower bounds on the optimal cost-to-go function
of a Markov decision problem. More recently, Haugh and Ruiz-Lacedelli (2018) derive the
information relaxation bounds to Markov decision processes with partial observations.

To the best of our knowledge, the idea of information relaxation based duality can be
dated back to Rockafellar and Wets (1976), who show the possibility of associating with the
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non-anticipative requirement on the solution of a multi-stage stochastic program a Lagrange
multiplier that satisfies a martingale property. Davis (1989, 1991) and Davis and Zervos
(1995) also find that introducing appropriate Lagrange multiplier terms in the objective
function of an LQC problem and solving the corresponding pathwise optimization problem
will lead to the optimal controls for the original problem. Later, Rogers (2007) represents
the value function of a discrete-time controlled Markov process in a dual Lagrangian form
with the help of measure-change arguments and the perfect information relaxations.

A lot of interesting theoretical results, such as weak and strong dualities under various
setups, have been established by the aforementioned papers. People especially find that the
dual value should be identical to the true value of the original SDP problem for an optimally
chosen penalty — the strong duality relation. However, solving for this optimal penalty
is not easy. Thus the existing literature typically heuristically selects “good” martingale
penalty functions and numerically examine its quality. Contributing to this literature, the
DDP algorithm presents a systematic approach to iteratively construct the optimal duality.

As a special case of the general SDP problem, Rogers (2002), Haugh and Kogan (2004),
Andersen and Broadie (2004), and Desai, de Farias, and Moallemi (2012b) investigate the
dual representation of American option pricing and more generally the optimal stopping
problem. In particular, Chen and Glasserman (2007) discuss how to improve the dual
bounds on the option prices iteratively. However, what differentiates the case of Ameri-
can option pricing or more broadly optimal stopping from a general SDP problem is that the
state transition probabilities in the former case generally do not depend on the exercising
actions taken by the option holder. In this sense, our paper extends the study of Chen and
Glasserman (2007) to a general setup of dynamic programming.

The remainder of the paper is organized as follows. In Section 2, we review the basic dual-
ity results developed by Brown, Smith, and Sun (2010). We develop the theory underpinning
the DDP algorithm in Section 3 and illustrate how it works using the LQC problem as an
example. Section 4 is devoted to the regression-based Monte Carlo simulation implemen-
tation and the related convergence analysis. Section 5 presents two numerical experiments.
All the proofs and some supplementary discussions are deferred to the AppendixAppendix.

2 The Dual Formulation of an SDP Problem

To fix the idea, we consider a generic finite-horizon discrete-time SDP problem in a probabil-
ity space (Ω,F ,P). Suppose that a planner makes sequential control decisions on a system
over a T -period time horizon indexed by t = 0, 1, ..., T . At the beginning of each time period
t, given the system state xt ∈ Rn, she takes an action at ∈ At ⊆ Rm, where At is the set of
all feasible actions at that moment. A random vector ξt : Ω → Rd will materialize during
the period. To make the problem Markovian, we assume that all ξt’s are independent. The
purpose of this assumption is only for notational simplicity. Most of the subsequent results
still hold when we generalize the discussion to non-Markovian cases in which the probability
distribution of ξt may depend on the whole trajectories of {ξ0, ..., ξt−1} and {x0, ..., xt}. The
planner then incurs a cost amounting to rt that may be dependent on xt, at, and ξt. The
system evolves to a new state according to the following recursive dynamic

xt+1 = ft(xt, at, ξt) (1)
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and the next round of decision making starts. Here ft, t = 0, 1, ..., T − 1, is a function
from Rn × At × Rd to Rn, mapping the current state, the selected action, and the realized
randomness to another state. The planner attempts to minimize the expected aggregate
costs

E

[
T−1∑
t=0

rt(xt, at, ξt) + rT (xT )
∣∣∣x0

]
(2)

in this process by taking proper actions, where rT (xT ) stands for the terminal cost received
at the end of the planning horizon.

We call α = (α0, . . . , αT−1) a policy if each argument αt of it is a function from Ω to
At, t = 0, · · · , T − 1. In other words, a policy prescribes the rule of action selection for
the planner for each possible outcome ω in Ω in each period. To reflect the information
constraint that the planner faces, assume that she cannot peek into the future of the system
dynamics. Hence, the decision that she makes in period t relies only on what is known about
the past trajectory of the system at the beginning of the period. More formally, letting
Ft = σ(x0, ..., xt) be the σ-algebra generated by the information about the system states
up to time t, we require the planner’s policy to be admissible in the sense that αt is Ft-
measurable for all 0 ≤ t ≤ T − 1. Denote F = (F0,F1, . . . ,FT−1) with F0 = {∅,Ω}. The
objective of the decision maker can then be formulated as optimizing

V0(x) = inf
α∈AF

E

[
T−1∑
t=0

rt(xt, αt, ξt) + rT (xT )
∣∣∣x0 = x

]
, (3)

where AF denotes the collection of all admissible policies with respect to the information
filtration F.

It is well known that we may invoke the principle of dynamic programming (or the
Bellman equation) to solve the above SDP problem (3). Let Vt(x) be the cost-to-go function
of the system from time t onward; that is,

Vt(x) = inf
α∈AF|t

E

[
T−1∑
s=t

rs(xs, αs, ξs) + rT (xT )
∣∣∣xt = x

]
, (4)

where

AF|t =
{
α = (αt, . . . , αT−1) : αs is Fs-measurable for all t ≤ s ≤ T − 1

}
.

The Bellman equation dictates that we can determine the value of Vt in a backward fashion:

VT (x) = rT (x); (5)

Vt(x) = inf
at∈At

E [rt(x, at, ξt) + Vt+1(ft(x, at, ξt))] (6)

for all t = 0, · · · , T − 1 and x ∈ Rn. The expectation in (6) is taken with respect to the
probability distribution of ξt. Furthermore, if a∗t = α∗t (x) minimizes the right hand side of
(6) for each x and t, the policy α∗ = (α∗0, . . . , α

∗
T−1) is optimal.
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However, the curse of dimensionality prevents us from directly utilizing the Bellman
equations (5-6) to solve the SDP problem because the computational complexity that this
procedure incurs grows exponentially as the dimensionality of the state, randomness, and
action spaces increase; see, e.g., Sections 1.2 and 4.1 in Powell (2011) for detailed discussions
on this issue. In light of this difficulty, people often have to settle for a computationally
tractable approximate (thus, suboptimal) policy of adequate performance. This gives rise
to a natural question about how to assess such approximate policies without knowing where
the optimality is. As noted in the introduction, the dual formulation proposed in Brown,
Smith, and Sun (2010) presents a systematic approach by which we can measure the quality
of a suboptimal policy, or in other words, how close it is to the optimal one.

The key ingredients of their duality are the concept of information relaxation and a
related penalty. For the purpose of this paper, we only consider the case of perfect relaxation
and refer readers to their paper for a rigorous development of the dual theory under a general
framework. Intuitively, if we relax the requirement of information admissibility on policies
by allowing the decision maker to take actions after she observes the entire realization of
randomness (ξ1, · · · , ξT ), we should be able to obtain a lower bound to the true cost value
V0. More precisely, by Jensen’s inequality, we have

E

[
inf
a∈A

(
T−1∑
s=0

rs(xs, as, ξs) + rT (xT )

)∣∣∣x0 = x

]
≤ V0(x) (7)

for all x. Note that the minimizer of the optimization inside the expectation on the left hand
side of (7) is not admissible in the original problem because it may depend on the whole
trajectory of (ξ1, · · · , ξT ).

Brown, Smith, and Sun (2010) further points out that we can achieve equality in (7)
if properly penalizing the objective function inside the expectation. Corresponding to the
above perfect relaxation, one possible penalty can be constructed as follows. Let W =
(W1(·), . . . ,WT (·)) be any sequence of functions such that each argument Wt : Rn → R maps
the system state to real numbers. Given an action sequence a = (a0, . . . , aT−1) ∈ A :=
A0 × · · · × AT−1 and a sequence of randomness ξ = (ξ0, . . . , ξT−1), we can use Eq. (1) to
recursively generate a trajectory of system states (x1, · · · , xT ). Along it, define a penalty
function such as

z(a, ξ) =
T−1∑
t=0

{E[rt(xt, at, ξt) +Wt+1(ft(xt, at, ξt))]− (rt(xt, at, ξt) +Wt+1(ft(xt, at, ξt)))} , (8)

where the expectation inside the sum is taken with respect to the distribution of ξt. Then,
Brown, Smith, and Sun (2010) show that

V0(x) = sup
W

E

[
inf
a∈A

(
T−1∑
s=0

rs(xs, as, ξs) + rT (xT ) + z(a, ξ)

)∣∣∣x0 = x

]
. (9)

The strong duality relationship (9) paves a useful way to assessing the quality of a specific
admissible policy α. First, we may evaluate the policy by calculating

V t(x) = E

[
T−1∑
s=t

rs(xs, αs, ξs) + rT (xT )
∣∣∣xt = x

]
for all 0 ≤ t ≤ T .
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Surely V t(x) ≥ Vt(x) for any x because of the sub-optimality of α. Then, we replace the
generic W in (8) by V t to construct a penalty z and compute the associated dual value

V 0(x) = E

[
inf
a∈A

(
T−1∑
s=0

rs(xs, as, ξs) + rT (xT ) + z(a, ξ)

)∣∣∣x0 = x

]
.

From (9), we have V0(x) ≥ V 0(x), which implies

0 ≤ V 0(x)− V0(x) ≤ V 0(x)− V 0(x).

When the dual gap V 0 − V 0 is sufficiently tight, we can conclude that the performance of
policy α must be very close to the optimality. One can refer to those works mentioned in
the introduction for various applications of the above duality-based policy assessment.

3 DDP: A Duality-Driven Dynamic Programming Method

Beyond the aforementioned policy assessment, the primary interest of the current paper is
on the second research question posed in the introduction: can we develop a systematic
approach to improving the policy in hand if we find that its dual gap is not tight enough?
In this section, we build up an iterative method on the basis of the SDP information duality
to achieve the goal of policy improvement.

3.1 Subsolutions and Dual Value Iteration

Central to our investigation are the notion of subsolution and, more importantly, its close
relationship with the information duality.

Definition 3.1 (subsolution) A functional sequence S = (S0, S1, ..., ST ) with St : Rn →
R, 0 ≤ t ≤ T , is called a subsolution to the problem (3) if it satisfies

St(x) ≤ inf
at∈At

E [rt(x, at, ξt) + St+1(ft(x, at, ξt))]

for any t = 0, 1, ..., T − 1 and x ∈ Rn with the convention that ST (x) = rT (x).

The concept of subsolutions to a generic SDP problem has been long known in the literature;
one may see, for instance, Theorem 6.2.2 in Putman (1994) or Theorem 3.4.1 in Powell
(2011). It just generalizes the Bellman equation (cf. (6)) by replacing the equality with
an inequality. One well-known fact is that any subsolution provides a lower bound on the
true value of the primal problem (3) (e.g., Theorem 6.2.2 in Putman (1994)). Using the
subsolution requirement on each state as the constraints, de Farias and Van Roy (2003)
developed a linear programming based approach to approximate solutions to the SDPs. Let
S denote the collection of all the subsolutions to the problem (3).

As one of the key underpinnings of our DDP algorithm, Proposition 3.2 points out that
the dual operation actually offers us a way to construct subsolutions. Introducing some
operator notations here will help us present the main results in a compact way. Take any
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functional sequence W = (W0(·), . . . ,WT (·)) and consider the tail subproblem (4) for each t,
0 ≤ t ≤ T − 1. Note that it is still an SDP problem. Hence, we can apply the corresponding
dual formulation to it, namely, construct the associated penalty

zt(a, ξ) =
∑T−1

s=t {E[rs(xs, as, ξs) +Ws+1(fs(xs, as, ξs))]− (rs(xs, as, ξs) +Ws+1(fs(xs, as, ξs)))} ,(10)

by using the tail sequence of W , (Wt+1(·), . . . ,WT (·)), and obtain the dual function

W ′
t(x) := E

[
inf
a∈A|t

(
T−1∑
s=t

rs(xs, as, ξs) + rT (xT ) + zt(a, ξ)

)∣∣∣xt = x

]
(11)

for each t, where A|t = At × · · · × AT−1. In this way, as implied by the duality theory
discussed in the last section, we reach a sequence of lower bounds W ′ = (W ′

0(·), · · · ,W ′
T (·))

to the true cost value of every tail problem. From now on, let D denote the dual operator
defined through (10-11) that can be viewed as acting on any functional sequence W to
produce another function sequence DW = ((DW )0, · · · , (DW )T ), where (DW )t(x) = W ′

t(x)
for 0 ≤ t ≤ T − 1 and (DW )T (x) = rT (x).

Examining the relationship among (DW )t across all t’s, we have

Proposition 3.2 Let W = (W0,W1, ...,WT ) be any functional sequence. Then, DW ∈ S,
i.e., for all t,

DWt(x) ≤ inf
at∈At

E [rt(x, at, ξt) +DWt+1(ft(x, at, ξt))] .

This proposition reveals that the information relaxation based duality and the subsolutions
are closely related. In particular, the former presents a systematic way of constructing the
latter. This finding is new to the existing literature to the best of our knowledge. Moreover,
Proposition 3.2 indicates that, if we repeatedly apply the the operator D on W , i.e., letting
DnW = D(Dn−1W ) for all n ≥ 1, we can obtain a sequence of subsolutions {DnW, n ≥ 1}.

Now we are ready to present Theorem 3.3, one of the main results of the paper. In it,
we show that the above dual value sequence increasingly converges to the true cost-to-go
function of the primal problem (3).

Theorem 3.3 (i) The subsolution sequence {DnW,n ≥ 1} is increasing in n in the sense
that (Dn+1W )t(x) ≥ (DnW )t(x) for all n ≥ 1, 0 ≤ t ≤ T , and x ∈ Rn;
(ii) if, for some n, (Dn+1W )t(x) = (DnW )t(x) for all t and x, then DnW ≡ V ;
(iii) DT+1W = V .

Recall that any subsolution is dominated by the true cost-to-go function. Hence, one implica-
tion of Part (i) of Theorem 3.3 is that DnW ≤ Dn+1W ≤ V . In other words, the subsolution
sequence {DnW} iteratively improves its quality of approximation as lower bounds on V .
Two key facts underpin the proof of Part (i). First, we need to show that, for any given
subsolution, applying the dual operation on it will lead to a tighter lower bound on the
true value function of the primal problem. It is worth noting that similar results have
been established in the setups of optimal stopping problems (Chen and Glasserman (2007))
and infinite-horizon Markov decision processes (Desai, de Farias, and Moallemi (2013) and
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Brown and Haugh (2017)). To prove Part (i), we manage to extend the fact to a finite-
horizon framework. The second fact, Proposition 3.2, also plays an important role in the
proof. It guarantees that DnW , as the output of the last dual iteration, is still a subsolution.
So, implied by the first fact, we can further apply D on it in the next iteration to yield more
improvement. In other words, Proposition 3.2 accomplishes the inductive step for us to carry
out induction on the sequence of {DnW} to show (i).

A more powerful conclusion stems from Parts (ii) and (iii) of the theorem. That is, the
improvements in the sequence {DnW,n ≥ 1} will terminate in a finite number of iterations
and when it terminates, the optimal value of the primal problem has been achieved. From
this, we propose the following DDP algorithm to solve the problem (3) in an iterative manner:

Table I: A Duality Driven Dynamic Programming (DDP) Algorithm

• Step 0. Initialization:

– Step 0a. Select an initial approximate value function sequence W 0 = (W 0
0 , · · · ,W 0

T ).
One way to do it, for instance, is to use a feasible policy α to compute its corresponding
value

W 0
t (x) := E

[
T−1∑
s=t

rs(xs, αs, ξs) + rT (xT )
∣∣∣xt = x

]

for all x ∈ Rn and 0 ≤ t ≤ T − 1. Let V 0 = W 0.

– Step 0b. Set n = 1.

• Step 1. Construct subsolutions using the dual operator D:

– Step 1a. For V n−1, define a penalty function sequence zn = (zn0 , · · · , znT ) such that
znT (a, ξ) = 0 and for any given 0 ≤ t ≤ T − 1,

znt (a, ξ) =
∑T−1

s=t

{
E[rs(xs, as, ξs) + V n−1

s+1 (fs(xs, as, ξs))]− (rs(xs, as, ξs) + V n−1
s+1 (fs(xs, as, ξs)))

}
(12)

with a = (a0, · · · , aT−1) ∈ A and ξ = (ξ0, · · · , ξT−1).

– Step 1b. For all state x and time t, determine the value of the following lower bound

V n
t (x) = E

[
inf
a∈A|t

(
T−1∑
s=t

rs(xs, as, ξs) + rT (xT ) + znt (a, ξ)

)∣∣∣xt = x

]
. (13)

• Step 2. If V n(x) 6= V n−1(x) for some x, let n = n+ 1 and go to Step 1.

Though the DDP algorithm focuses on updating the dual value, it can be used to improve
control policies as well. For a suboptimal policy α, we may run Step0a to evaluate it and
initiate the algorithm with its policy value. Suppose that the algorithm terminates at the
nth iteration. Replace the value function Vt+1 in the one-step Bellman equation (6) with
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V n
t+1 and solve

αnt (x) = arg min
at∈At

E
[
rt(x, at, ξt) + V n

t+1(ft(x, at, ξt))
]

(14)

for a new policy αnt (·) at time t, 0 ≤ t ≤ T − 1. According to Part (ii) of Theorem 3.3, we
should have achieved the optimality, i.e., V n = V . The optimality of αn = (αn0 , · · · , αnT−1)
ensues.

3.2 An Illustration: Linear-Quadratic Control

Below we will use the classical LQC problem to demonstrate the effectiveness of policy
improvement of the algorithm. In this case, the DDP algorithm can yield the optimal
policy after just two iterations of the dual operation, no matter how long the time horizon
of the problem is. By (13), the key steps in each dual iteration involve solving the inner
optimization problem and determining the outer expectation value. One caveat is that,
unlike the LQC example in which closed-form expressions for both are available, it is in
general difficult to explicitly carry out these two types of computation, especially in high-
dimensional problems. To address this issue, we shall explore in Section 4 how to resort to
some numerical techniques, such as Monte Carlo simulation and the related approximation
architectures, to implement the DDP algorithm effectively. One error bound is also developed
therein (cf. Theorem 4.5) to deliver the performance guarantee. Theorem 3.3, despite its
theoretical nature, still serves as an important cornerstone for us to obtain such numerical
performance guarantees.

The LQC problem has received a lot of attention in control theory because of its tractabil-
ity. It is widely applied in automatic control of a motion or a process to formulate how to
regulate a system to stay close to the origin. The closed-form solution to the problem is well
known in the literature. The intention of this subsection is definitely not to repeat these
known results. Instead, we want to corroborate the result of the last subsection by show-
ing its policy-improving effect. Following the standard setup of a LQC problem, consider a
system whose dynamic equation is given by

xt+1 = Dtxt +Btat + ξt, t = 0, · · · , T − 1. (15)

When it runs, it will incur a cost of

T−1∑
t=0

(
xtrt Qtxt + atrt Rtat

)
+ xtrTQTxT . (16)

In these expressions, Dt ∈ Rn×n, Bt ∈ Rn×m, Qt ∈ Rn×n, and Rt ∈ Rm×m, are all given. The
matrices Qt are positive semidefinite symmetric and the matrices Rt are positive definite
symmetric. There is no constraint on the controls at, i.e., we may take any vector in Rm

as its value. Each ξt has zero mean and a finite second moment. Assume that the decision
maker has perfect information of the state x over the course of system evolution.

From the above description, it is not difficult to see that this problem is just a special
case of (1-2) by taking a linear form for the evolution function ft and a quadratic form for
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the cost rt. Its optimal policy is explicitly known in the literature (see, e.g., Sec. 4.1 in
Bertsekas (1995)) to be of the following linear form: α∗t (x) = −Ltx, for t = 0, · · · , T − 1.
Accordingly, the optimal cost function equals

V ∗t (x) = xtrKtx+
T−1∑
s=t

E
[
ξtrs Ks+1ξs

]
. (17)

Here, both matrices Lt ∈ Rm×n and Kt ∈ Rn×n are explicitly computable. Detailed discus-
sions are deferred to Electronic Companion B.

Applying the DDP algorithm to the LQC problem, we have

Proposition 3.4 Fix a matrix Pt ∈ Rm×n and a vector Et ∈ Rm×n for each t. Consider a
policy of the linear form

αt(x) = Ptx+ Et, 0 ≤ t ≤ T − 1. (18)

If we start the DDP algorithm with this policy, then it will terminate after two iterations at
V 2 ≡ V ∗.

Corroborating the results in Theorem 3.3, Proposition 3.4 shows that our DDP algorithm
warrants the convergence to the true cost function of the LQC problem in two iterations.
There are several studies in the literature related to the application of the information
relaxation technique in LQC. Davis and Zervos (1995) postulate a linear form for the optimal
penalty and thereby present a new proof of the LQC optimal control theorem based on the
dual formulation. Haugh and Lim (2012) develop two types of approaches to constructing
optimal penalties for an LQC problem. However, both of their constructions require some
prior knowledge on the optimal value function of LQC. Compared with these studies, our
DDP algorithm provides a more mechanical way to find the optimal penalty with little prior
knowledge required.

The proof of Proposition 3.4 is contained in Appendix B. This example highlights one
advantage of working with the duality-driven method in the computational aspect. That
is, to compute the dual value, we just need to solve a deterministic optimization problem
inside the expectation for which there is a vast research base that we can draw on for help.
In particular, the proof of Proposition 3.4 shows that the minimization problem leading to
the duality for the LQC problem turns out to be a quadratic program, which is well known
to be tractable in the optimization literature (see, e.g., Nocedal and Wright (1999), Chapter
16).

4 Monte Carlo Implementation of the DDP Algorithm

As noted at the beginning of Section 3.2, the intrinsic difficulty of dealing with a general SDP
problem lies in the fact that the inner optimization and the outer conditional expectation in
(13) often cannot be analytically solved. Below we propose the use of regression to estimate
the duality V n from simulated states for the purpose of implementing the DDP algorithm
via Monte Carlo simulation. A related convergence analysis is developed in Section 4.2.
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4.1 Regression-based Algorithm

In the first step of the algorithm, we need to generate a group of states on which the value
of

inf
a∈A|t

(
T−1∑
s=t

rs(xs, as, ξs) + rT (xT ) + znt (a, ξ)

)
(19)

will be estimated so that we can use regression to build up the approximation to the con-
ditional expectation in (13). Many of the regression-based methods in the literature on
American option pricing (see, e.g., Carriére (1996), Longstaff and Schwartz (2001), Tsitsiklis
and Van Roy (1999, 2001)) directly invoke the dynamic of the underlying asset to simulate
states for continuation value estimation. Note that the exercising decision for an American
option has no impact on the underlying price dynamics. One additional layer of complexity
encountered here in a general SDP problem is that its state evolution hinges on the policy
that we are using. As illustrated by the example in Appendix D.2, using a suboptimal policy
of the original problem (1) to generate the states that our DDP algorithm will visit later can
possibly lead to being stuck in suboptimality, because with this policy the algorithm may
have no chance to access such states that contain useful information for us to improve the
estimation.

To avoid this exploration pitfall, we suggest that the sequence of probability density func-
tions {G1, · · · , GT} that are utilized for the purpose of state selection should be independent
of the current policy of the SDP problem. In particular, if the support sets of all the G’s
contain the entire state space of the problem, these sampling distributions enable us to reach
any states in the space with nonzero chance. Imposing this ergodic requirement on G as one
of the sufficient conditions, we investigate in Theorem 4.5 the asymptotic properties of the
regression-based implementation of the DDP algorithm. Denote the number of simulated
representative states by L hereafter. We independently draw L states, (x

(1)
t , · · · , x(L)

t ), from
the distribution Gt at each time period t, t = 1, · · · , T , where the superscript (l), 1 ≤ l ≤ L,
indicates the lth sample at time t. The values of the dual functions will be estimated on
these points.

We now turn to present the core step of the implementation, i.e., how to use Monte Carlo
regression to obtain an approximation to V n from the previous estimate of V n−1 (cf. Step
1 in Table I). Let {ψ1, · · · , ψM} denote a pre-specified set of basis functions, where each
argument ψm is a function mapping from Rn to R. Assume that the previous iteration has
yielded that V n−1 can be approximated by

V n−1
t (x) ≈ V̂

n−1

t (x) :=
M∑
m=1

β̂n−1
t,m ψm(x) (20)

for some constants β̂n−1
t,m , 1 ≤ m ≤M and 1 ≤ t ≤ T . Following Step 1a in DDP, to construct

a new penalty for the next round, we substitute the right hand side of (20) into (12). We
then have the following approximation to znt (a, ξ):

znt (a, ξ)

=
∑T−1

s=t

{
E
[
rs(xs, as, ξs) +

∑M
m=1 β̂

n−1
s+1,mψm(fs(xs, as, ξs))

]
−
(
rs(xs, as, ξs) +

∑M
m=1 β̂

n−1
s+1,mψm(fs(xs, as, ξs))

)}
13



for any a and ξ, where the expectation in the first term of znt is taken with respect to ξs.
In evaluating znt , we need to compute E[ψm(fs(xs, as, ξs))]. For many applications, es-

pecially when ψm is a polynomial, fs is simple, and the distribution of ξs is analytically
known, we can explicitly compute this expectation. For the cases in which its closed-form
expression is not available, we may rely on Monte Carlo simulation to generate samples
from the distribution of ξs and then use sample averages to approximately evaluate it. To
expedite the computation in this step, we also attempt an alternative simulation method,
which is the low-discrepancy method from the quasi-Monte Carlo (QMC) literature, in the
numerical experiments of the next section. Different from plain Monte Carlo, this QMC ap-
proach deterministically chooses representative points for ξ. We find that QMC can deliver
excellent approximation performance with a relatively smaller number of simulation trials,
consistent with the well known fact that the QMC converges faster than the ordinary Monte
Carlo. One may refer to Chapter 5 of Glasserman (2004) for a comprehensive coverage of
this subject.

Once the value of znt (a, ξ) is determined, we proceed to build up the regression estimators
for the conditional expectation (13) in Step 1b of the DDP algorithm. To this end, we posit
that (13) can be represented as a linear combination of the basis functions, i.e.,

E [Jt,n(ξ|t, xt)] := E
[
infa∈A|t

(∑T−1
s=t rs(xs, as, ξs) + rT (xT ) + znt (a, ξ)

) ∣∣∣xt = x
]

=
∑M

m=1 β
n
t,mψm(x),(21)

at xt = x for any given t, t = 0, · · · , T − 1. Here, Jt,n(ξ|t, xt) is a shorthand notation for the
minimization problem inside the expectation, whose value apparently depends on the tail
vector of random perturbation ξ|t = (ξt, · · · , ξT−1) and the system state xt at time t. The
standard least square arguments imply that the coefficient vector βnt = (βnt,1, · · · , βnt,M)tr in
(21) should be given by

βnt = (Bt
ψψ)−1Bt,n

Jψ := (EG[ΨM(Xt)ΨM(Xt)
tr])−1EG⊗ξ[ΨM(Xt)Jt,n(ξ|t,Xt)]. (22)

In (22), Bt
ψψ is the indicated M ×M matrix EG[ΨM(Xt)ΨM(Xt)

tr] (assumed nonsingular)
with ΨM(x) = (ψ1(x), · · · , ψM(x))tr. The superscript G stresses that the expectation is
defined on Gt, the distribution of Xt. Meanwhile, Bt,n

Jψ is the indicated vector of dimension

M computed from EG⊗ξ[Ψ(Xt)Jt,n(ξ|t,Xt)] with Xt ∼ Gt and ξ|t independently drawn from
its own distribution.

Both Bt
ψψ and Bt,n

Jψ can be estimated on the basis of observations of pairs (ξ|t,Xt). More

explicitly, starting from each point x
(l)
t , we independently simulate one path of ξ(l)|t =

(ξ
(l),t
t , ξ

(l),t
t+1 , · · · , ξ

(l),t
T−1) from the distribution of ξ. Suppose for a moment that the value of

Jt,n(ξ|t,Xt) can be (approximately) computed at each pair (ξ(l)|t, x(l)
t ) and denote that quan-

tity by J
(l)
t,n. Let B̂t

ψψ be an M ×M matrix with the (i, j)-entry

1

L

L∑
l=1

ψi(x
(l)
t )ψj(x

(l)
t ) (23)

and B̂t,n
Jψ be an M -vector with the kth entry

1

L

L∑
l=1

J
(l)
t,nψk(x

(l)
t,n). (24)
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Then, an estimate to βnt can be formed by β̂nt = (B̂t
ψψ)−1B̂t,n

Jψ . From it, we complete one
iteration in our DDP algorithm by building up a new approximate to the dual value function

V n
t (x) ≈ V̂

n

t (x) :=
M∑
m=1

β̂nt,mψm(x),

where β̂nt,m is the mth entry of β̂nt .

To determine the value of J
(l)
t,n, we replace znt (a, ξ) by its approximation znt (a, ξ) in

Jt,n(ξ|t,Xt) and solve the following optimization problem:

J
(l)
t,n := inf

a∈A|t

(
T−1∑
s=t

rs(xs, as, ξ
(l),t
s ) + rT (xT ) + znt (a, ξ(l)|t)

)
(25)

subject to the constraints xt = x and

xs = fs−1(xs−1, as−1, ξ
(l),t
s−1) (26)

for all s = t + 1, · · · , T . The outcome of the above optimization problem, denoted by J
(l)
t,n,

will be used as one observation of Jt,n(ξ|t,Xt) at (ξ(l)|t, x(l)
t ) to estimate Bt,n

Jψ.

It is worth mentioning that, given ξ(l)|t = (ξ
(l),t
t , ξ

(l),t
t+1 , · · · , ξ

(l),t
T−1), the problem (25-26) is

indeed a deterministic optimization program. Compared with many of the SDP algorithms
in which stochastic optimization is involved, the computation for the solution to (25-26)
is less demanding. Similar to the case of LQC problems, the vast research literature on
deterministic optimization provides us various flexible and potent methodologies that we
can draw on to solve it. In particular, we develop in the next section an efficient numerical
scheme based on the DC programming to solve this inner optimization problem for a broad
class of control problems. Simplifying the underlying probabilistic structure of an SDP
problem to yield some computational advantages is a commonly used strategy in approximate
dynamic programming. For instance, the approach of certainty equivalent control replaces
the stochastic disturbances with deterministic quantities so as to reduce the SDP problem
to a deterministic one; see, e.g. Chapter 2.3 of Bertsekas (2019). Such simplification arises
naturally in the duality formulation.

We encapsulate the implementation procedure discussed above in Table III in Appendix
D.1. As noted in the introduction, another computational advantage of the algorithm is that
we can deploy parallel computing to expedite it. Note that, for different representative state
x(l), 1 ≤ l ≤ L, simulation of the associated ξ(l)|t and the subsequent inner optimization
in Step 1b of Table III are independent. It is easy to parallelize the execution of these
procedures at different x(l) using multiprocessor machines. Finally, with the help of the
approximate lower bound V̂

n
obtained from our regression-based algorithm, we can also

build up a confidence interval estimate, which many approximate dynamic programming
methods are short of, for the true cost-to-go value of the original problem. One may refer to
the discussion around Table IV in D.1 and the numerical examples in the next section for
details in this regard.
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4.2 Convergence Analysis

Theorem 3.3 establishes that in principle the DDP method should lead a convergence to
the true value of the SDP problem in finite rounds of iterations. In contrast, its regression-
based implementation, as discussed in Section 4.1, is apparently subject to the biases coming
from three sources. First, the functional approximations built upon the basis functions may
be biased relative to the true dual function V n. Second, the states {x(l), 1 ≤ l ≤ L}
simulated at the beginning of algorithm execution may not be sufficiently representative.
Third, the solver of the optimization problem (25-26) may only be able to find its local
optimal solution. However, in comparison with the first two errors, the error that arises
in solving the deterministic optimization problem is typically not significant if a proper
optimizer is used, as suggested by the numerical examples in Section 5. Hence, we focus
only on the characterization of how the performance of the DDP algorithm will be affected
by those factors in Theorem 4.5.

Without loss of generality, let us assume that the state space X of the original problem
is compact in the subsequent convergence analysis. Many numerical examples, including the
ones in Section 5.2, satisfy this assumption. In addition, for those cases with unbounded
state spaces, we can obtain approximations with sufficient accuracy by truncating the spaces
into compact ones; see, for instance, Altman (1999), Kushner and Dupuis (2001), Dufour
and Prieto-Rumeau (2012), and Saldi, Linder and Yuksel (2018) for more discussions in that
direction.

Consider an infinite series of basis functions {ψm(x),m ≥ 1}. Suppose that we take the
first M functions from this set to form a functional vector ΨM(x) = (ψ1(x), · · · , ψM(x))tr

to perform the DDP algorithm. We intend to characterize how its outcome will converge to
the true value as we increase both the number of representative states L and the number of
the basis functions M . We need several other technical assumptions to proceed. First,

Assumption 4.1 There exists a measure F , whose support is X , such that the basis function
sequence {ψm(x),m ≥ 1} is orthonormal under this measure F ; that is to say,∫

Rn

ψi(x)ψj(x)dF (x) =

{
0 i 6= j,
1 i = j.

Note that this assumption is not restrictive at all because we may perform the celebrated
Gram-Schmidt orthogonalization to construct an orthogonal basis from any given set of
linearly independent functions.

The second assumption is about the distributions {Gt, 1 ≤ t ≤ T} that are used for
sampling representative states.

Assumption 4.2 Each of the sampling distributions Gt(x) is absolutely continuous with
respect to the measure F in Assumption 4.1. Furthermore, the Radon-Nykodym derivative
between these two measures dGt/dF (x) is bounded away from zero and infinity on X . In
other words, there exist strict positive constants ε and D such that ε < dGt/dF (x) < D for
all x ∈ X .

Essentially the purpose of Assumption 4.2 is to help us avoid the aforementioned exploration
pitfall (cf. Appendix D.2). The positiveness of dG/dF over the entire state space X ensures
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that the state samplers introduced in the algorithm have non-zero probability to access any
part of X .

Finally, we assume

Assumption 4.3 There exists a constant C such that, for any positive integer M , a func-
tional vector consisting of the first M basis functions in the set, ΨM(x) = (ψ1(x), · · · , ψM(x))tr,
satisfies

sup
x∈X

(
M∑
m=1

ψ2
m(x)

)1/2

≤ CM and sup
1≤m≤M

EG[ψ2
m(X)] ≤ C,

and

Assumption 4.4 The optimal cost-to-go function {Vt(x)}0≤t≤T is bounded on the compact
set X .

Indeed, one can show that Assumption 4.3 holds for many popular series used in the literature
on the approximation theory, including Fourier series, spline series, and local polynomial
partition series; see Belloni et al. (2015) for a detailed discussion. The boundedness of the
value function V in Assumption 4.4 is natural if we can establish its continuity. Hernández-
Lerma and Lassere (1997) suggest some technical conditions under which a general SDP
problem has continuous value functions.

Now we turn to present the main asymptotic result for our regression-based algorithm.
Let

∆M := max
0≤t≤T

inf
γt=(γ1t ,··· ,γMt )∈RM

‖Vt −Ψtr
Mγt‖∞,

where ‖ · ‖∞ is the L∞ norm such that ‖f‖∞ = supx∈X |f(x)|. The quantity ∆M measures
the least error magnitude that we can achieve if we approximate the true value function of
the SDP problem by linearly combining the M basis functions. Recall that, absent both the
simulation and the approximation errors, the dual value sequence from the DDP method
should converge to the true value in at most T + 1 iterations as shown in Theorem 3.3.

Correspondingly, we develop an upper bound on the bias of V̂
T+1

, the approximate dual
value after T + 1 rounds of iterations of the regression-based algorithm, in the next theorem.

Theorem 4.5 Suppose that Assumptions 4.1 to 4.4 hold. Then, there exists a constant C,
independent of L and M , such that

E
[∣∣V̂T+1

0 (x)− V0(x)
∣∣] ≤ (1 + 2lM + C

(
M6

L

))T [
(1 + lM)∆M + C

(
M6

L

)1/4
]
, (27)

where lM is the corresponding Lebesgue constant of the basis functions {ψm(x),m ≥ 1} (cf.
Definition D.1 in Appendix D.3)

Theorem 4.5 clearly shows how the algorithm accuracy is determined by the choice of
basis functions and the amount of simulation effort. Note that both ∆M and lM are the char-
acteristics of the basis functions that we choose. In Remarks 4.6 and 4.7 below, we present

17



the corresponding orders of ∆M and lM with respect to M under a variety of commonly used
basis functions. For instance, lM will be bounded by a constant and ∆M decays in a power
order of M for some choices of basis functions. Once the set of basis functions is chosen and
M is fixed, we need to pick up a sufficiently large L to control the right-hand side of (27).
Theorem 4.5 spells out explicitly that L should grow faster than O(M6) in order to keep
such error in check. It is well known in regression analysis that a model can be overfitted
if the amount of observed data is insufficient relative to the number of regressors. When
L, the number of simulated states on which we estimate the dual values, is not adequate in
our DDP algorithm, this overfitting effect will cause a divergence for the DDP algorithm, as
illustrated by the numerical examples in Section 5. From the above discussion, we can see
that Theorem 4.5 can help us understand the asymptotic behavior of our DDP estimator
when both L and M tends to infinity for a given basis function set and thereby provide
us valuable guidances on the choice of basis functions and such parameters as L and M .
The numerical examples in Section 5 also show that the relative ratio between L and M
for the DDP algorithm to converge could be lower under some specific cases. We leave the
investigation on tighter error bounds to the future work.

Remark 4.6 The approximation theory has produced some bounds on the Lebesgue constant
lM for a variety of basis function sets. Suppose that the density function of G on X is bounded
away from zero and infinity. We can show that lM should be bounded by a constant C for
spline series, wavelet series and local polynomial partition series, and lM ≤ C log(M) for
Chebyshev polynomial series and Fourier series. See, e.g., Zygmund (2002), Huang (2003),
Belloni et al. (2015), and Chen and Christensen (2015).

Remark 4.7 As for ∆M , some studies show that, if the true value function is s times
continuously differentiable, the approximation error of the spline or polynomial regressors is
bounded by

∆M ≤M−κ,

where κ = s/d and d stands for the dimensionality of the function. For the proofs of this
property, one may refer to Section 7.6 of DeVore and Lorentz (1993), Section 5.3.2 of Timan
(1963), and Theorem 12.8 of Schumaker (1981).

5 Numerical Experiments

In this section we shall apply the regression-based Monte Carlo DDP algorithm to solve
two problems related to order execution and inventory management. Both are well known
to be intractable in the literature and only approximate methods are available so far. Our
algorithm demonstrates great potential in effectively assessing and improving these heuristic
policies towards optimality.

5.1 Optimal Order Execution in the Presence of Market Frictions

The first numerical example we consider in the paper is an optimal order execution problem
in which a trader plans to transact a large block of equity over a fixed time framework with
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minimum impact costs. It can be viewed as a variant of the models proposed in Bertsimas
and Lo (1998), Almgren and Chriss (2000), and Haugh and Wang (2014). Assume that there
are n different assets traded in the market, and the trader aims to acquire R̄ = [R̄1, · · · , R̄n]tr

shares in each of the assets in T periods. The objective of the trader is to determine a trading
schedule, i.e., how many shares to purchase in each period, denoted by {S1, · · · ,ST}, St ≥ 0,
t = 1, 2, · · · , T , to minimize the associated transaction cost. Let Rt ∈ Rn denote the number
of shares in each asset short of the target R̄ at time t. Then, a feasible trading schedule
should satisfy

T∑
t=1

St = R̄, St ≥ 0, St ∈ Rn, (28)

Rt+1 = Rt − St, R1 = R̄, for all t = 1, · · · , T . (29)

To complete the statement of the problem, we must specify the price dynamics. In
particular, we use P̃t ∈ Rn and Pt ∈ Rn to represent the fundamental values and actual
transaction prices of all assets at time t, respectively, and assume that P̃t and Pt follow the
evolution laws such that

P̃t = P̃t−1 + ASt + BXt + εt, (30)

Pt = P̃t + h(St), (31)

for all t, where A ∈ Rn×n is a positive definite matrix and B ∈ Rn×m. Here {εt, t =
1, · · · , T} is a sequence of white noises with mean zero and covariance matrices Σε. As
shown in (30-31), our model incorporates both permanent and temporary price impacts of
transaction activities. In (30), the constant matrix A is used to capture the intensity of
the permanent impact: trading the amount of St changes the assets’ fundamental values
by ASt and this change will last persistently in the future via the iterative relation of P̃.
Note that this permanent price impact takes a linear form, which is a commonly adopted
modeling assumption in the literature; see Bertsimas and Lo (1998), Almgren and Chriss
(2000), Huberman and Stanzl (2005), and Haugh and Wang (2014), for example. Huberman
and Stanzl (2004) and Gatheral (2010) argue that including a nonlinear permanent price
impact will introduce the possibility of arbitrage.

On the other hand, we introduce the function h(·) : Rn → Rn in (31) to reflect the
trading-caused impacts that will not last into the next period. The literature documents
that this kind of temporary impact in the real-life market should be concave in trading
quantities (cf. Bouchaud, Farmer, and Lillo (2009)). However, an assumption of concavity
often makes the control problem intractable. To demonstrate that our algorithm still works
well when analytical solutions are unavailable, we assume h(St) = D

√
St in the experiment,

where D is a constant coefficient matrix.
In addition, our model allows the trader to incorporate some predictive “signals” to

extract information about the stock’s future movements for improving the performance of
her trade execution. The auxiliary process Xt ∈ Rm in (30) serves this purpose. There are
several possibilities proposed in the literature for the choice of such signals. For instance,
Bertsimas and Lo (1998) suggest that X could be the return of a broader market index such
as S&P500, a factor commonly used in traditional asset pricing models such as CAPM, or
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the outputs of an “alpha” model from the trader’s private stock-specific analysis that is not
yet impounded into market prices. In the following experiment, we abstract out the true
meaning of X and assume it to follow a stationary AR(1):

Xt = CXt−1 + ηt, (32)

where C ∈ Rm×m is a matrix with all of its eigenvalues less than unity in modulus, which
determines the “decay” speed of the information, and the random noises ηt ∼ N(0,Ση) are
Gaussian white, independent of εt. It is worthwhile to point out that the particular form
of (32) is not essential for our algorithm to work. We have tried some other specifications
in the experiments for Xt and found that does not affect the effectiveness of the method.
Gârleanu and Pedersen (2013, 2016) use the same dynamic to model the return-predicting
factor in the investigation of portfolio policy when trading is costly and security returns are
predictable by signals.

As aforementioned, the trader’s problem is to minimize

min
{St,1≤t≤T}

E

[
T∑
t=1

Ptr
t St

]
, (33)

where Ptr
t St is how much the trader actually pays in period t. In E, we show that this

objective is indeed equivalent to

min
{St,1≤t≤T}

E

[
T∑
t=1

Strt h(St) +
T−1∑
t=0

(P̃t+1 − P̃t)
trRt+1

]
. (34)

The new representation (34) clearly points out two sources that are contributing to the
ultimate transaction costs of the trader. The first term corresponds to the temporary impact
cost that the trader needs to pay in the process of purchasing R̄ shares of assets due to the
presence of h(S). The second term consists of the changes in the fundamental value of the
assets because of the permanent price impact that her trading activities will generate. It is
easy to see that the above SDP problem has a convex objective function. Hence, the optimal
policy of the problem uniquely exists. It should be a function of state variables X and R.

Next we use the DDP algorithm to solve the minimization problem (34) with the constraints
(28-32). The nonnegative constraint St ≥ 0 turns out to be the most difficult one to deal
with. As suggested by Bertsimas and Lo (1998), imposing it will introduce a partition struc-
ture to the optimal policy, and more seriously, the number of partitioned regions increases
combinatorially with the time horizon T . This renders solving the problem through the Bell-
man equation computationally infeasible; see also Bemporad et al. (2002) for more discussion
on this issue in the context of a general constrained linear quadratic system. Aiming at some
applications in market microstructure, Chen, Kou, and Wang (2018) develop a partitioning
algorithm for linear-quadratic Markov decision processes with linear inequality constraints.
Their method recursively constructs polyhedral regions in which the optimal value function
and policy have analytical quadratic and linear forms, respectively. Note that the complexity
of their method is still exponential in T (cf. Notes 5 and 6 of their paper). Moreover, it
cannot be applied here because the existence of the concave temporary impact h(·) makes
our model no longer a linear-quadratic problem.
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A variety of heuristic approaches can help us derive approximate solutions to this problem.
The following numerical experiments show that our DDP algorithm can be used not only for
evaluating the performance but, more importantly, to effectively improve them. Below is a
summary of the heuristics that we consider in this paper.

• From a tractable simplification of the problem. It is straightforward to see that, if
we ignore the no-sales constraint St ≥ 0 and the temporary price impact h(St), the
problem (34) with the constraints (30-32) indeed degenerates to a standard LQC.
The computation in E shows that the optimal policy of this simplified problem is
analytically known:

S̃t(Xt,Rt) =

(
I− 1

2
Q−1
t+1A

tr

)
Rt +

(
1

2
Q−1
t+1Kt+1C

)
Xt, (35)

where Qt ∈ Rn×n and Kt ∈ Rn×m are two matrices that can be determined by the
matrix equations in (98-101). This linear policy emphasizes the importance of trading
on signals in the process of meeting the execution target, as the current information
level Xt affects the amount of trading volume S̃t. However, such S̃t is not feasible
to the original problem because it may take negative values when Xt is negative. To
restore a feasible policy, we may project S̃t into the region [0, R̄] by letting

SLQt (Xt,Rt) = min
(

max
(
S̃t(Xt,Rt), 0

)
,Rt

)
. (36)

• From linear program approximation. Introduced by Schweitzer and Seidmann (1985)
and further developed by de Farias and Van Roy (2003, 2004) and Desai, de Farias,
and Moallemi (2012a, 2013), the linear programming based approach provides us an
attractive way to construct approximate solutions to the dynamic programs. Con-
sider a collection of basis functions {ψ1, · · · , ψK} and use the following regression to
approximate the optimal value functions at every time t = 1, · · · , T :

Vt(Xt,Rt) ≈
K∑
k=1

θk,tψk(Xt,Rt),

where θt = (θ1,t, · · · , θK,t) is the regression coefficient to be determined. As noted in
the discussion around Definition 3.1, the true value function of an SDP must be the
largest subsolution. Select some representative states {(Xi,Ri) : i = 1, · · · , I}. Let ct,i
be a positive constant for all t = 1, · · · , T and i = 1, · · · , I. We may recast this fact
as a linear program for the problem (34):

max
θt:t=1,··· ,T

I∑
i=1

ct,i

K∑
k=1

θk,tψk(X
i,Ri)

subject to∑K
k=1 θk,tψk(X

i,Ri) ≤ minSt≥0 E
[
Strt h(St) + (P̃t+1 − P̃t)

trRt+1 +
∑K

k=1 θk,t+1ψk(Xt+1,Rt+1)
∣∣∣(Xt,Rt) = (Xi,Ri)

]
.(37)

Note that the constraint (37) is just a rephrasing of Definition 3.1 and it is a linear
inequality with respect to the regression coefficient θt.
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• Lookahead. One-step and multistep lookahead constitute another class of commonly
used approaches to produce approximate solutions to dynamic programs. We replace
Vt+1 in the Bellman equation (6) with any of its approximation Ṽt+1. Then, the mini-
mization

SLOt (Xt,Rt) = arg minSt≥0 E
[
Strt h(St) + (P̃t+1 − P̃t)

trRt+1 + Ṽt+1(Xt+1,Rt+1)
∣∣∣(Xt,Rt)

]
(38)

defines the one-step lookahead policy at state (Xt,Rt). For the purpose of illustration,
we make use of the value function of the simplified problem discussed in the first bullet
as Ṽ . To derive the multistep lookahead, we can minimize the cost of the first L > 1
steps with the future cost approximated by a function Ṽt+L.

• Backward dynamic programming. To overcome the curse of dimensionality encoun-
tered in utilizing the equations (5-6), one may use the basis functions to obtain low-
dimensional regression representations of the value functions and repeatedly substitute
them into the one-step Bellman’s equation (6) to produce approximate solutions to the
problem in a backward fashsion. The regression coefficients can be estimated by using
the least square method on some representative states that are fixed beforehand.

Starting from any of these heuristics, our DDP algorithm demonstrates a strong ability to
construct improved approximations for all of them. Table 1 displays the related convergence
results. Here we consider a case with three assets and a signal vector of two variables, i.e.
R = [R1, R2, R3]tr and X = [X1, X2]tr. To deal with this 5-dim problem, we use the following
set of basis functions in the experiment:{

1, (Xi)i=1,2, (Rk)k=1,2,3, (XiXj)1≤i,j≤2, (RkRl)1≤k,l≤3, (RkXj)1≤k≤3, 1≤j≤2,

(Rk

√
Rk)1≤k≤3, (X3

i )1≤i≤m, (R3
i )1≤i≤n, (X4

i )1≤i≤m, (R4
i )1≤i≤n

}
. (39)

The abbreviation (Xi)i=1,2, for example, represents that both functions X1 and X2 are in-
cluded. The other notations should be understood in the same way. We also include a
constant, represented by 1 in the set (39), in the regressors. In the interest of space, the
values of all the model parameters are reported in Appendix E.

As noted in Section 4, we need a state selector G to generate a number of representa-
tive pairs of (X,R) in the state space at each period t so that we can run regressions to
extrapolate the dual values observed on these pairs. Note that the signal process Xt has
an autonomous dynamic (32), independent of the control policies taken by the trader. We
thereby use its marginal distribution in the experiment to simulate samples for X. Mean-
while, since the sample trajectory of Rt resides in [0, 105]3 under any trading scheme, we
take the uniform distribution in this cube to sample R. To speed up the overall calculation
when evaluating the dual values, we parallelize the simulation of the state pairs (X,R) and
random noises (εt,ηt, t = 1, · · · , 20) to multicore CPUs (32 cores in our experiments) and
solve the corresponding optimization programs simultaneously.

Table 1 consists of four subparts. Each of them reports the respective convergence results
for the four approximate heuristics. We first assess the performance of each approximate
policy by evaluating its corresponding average transaction costs along K = 1×104 simulated
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Approximation Iteration Dual Values (SE) Primal Values (SE) Gap

0 325.49 (0.49) 18.88%

1 264.05 (2.71) - - -

LQ 2 267.12 (0.42) - - -
3 269.26 (0.25) 272.82 (0.53) 1.28%

4 269.33 (0.25)

Approximation Iteration Dual Values (SE) Primal Values (SE) Gap

0 433.28 (8.21) 40.38%

1 258.32 (0.63) - - -

2 266.38 (0.62) - - -
Linear 3 268.76 (0.32) - - -

4 269.63 (0.26) 272.44 (0.51) 1.06%

5 269.55 (0.25)

Approximation Iteration Dual Values (SE) Primal Values (SE) Gap

0 324.80 (0.49) 18.64%

1 264.23 (2.59) - - -

Lookahead 2 266.99 (0.44) - - -
3 269.10 (0.25) 272.38 (0.50) 1.12%

4 269.33 (0.25)

Approximation Iteration Dual Values (SE) Primal Values (SE) Gap

0 285.55 (0.50) 8.21%

Backward 1 262.08 (2.80) - - -

2 269.53 (0.24) 272.70 (0.50) 1.28%

3 269.56 (0.23)

Table 1: The convergence results of the DDP algorithm in the example of order execution. The four approximation methods
are used to construct the initial policies as the inputs to the DDP algorithm. We denote them by LQ, Linear, Lookahead, and
Backward, respectively, in the table. We simulate K = 1×104 sample paths of random noises (εt,ηt, t = 1, · · · , 20) to estimate
their corresponding values, which are reported in the cell of Primal Values in Iteration 0 of every subparts of the table. The
standard error of this policy estimation is shown in the column “(SE)”. The entry in Row “Iteration 1” and Column “Dual
Values” displays the dual value associated with each approximate policy. We sample L = 1.5× 104 pairs of (X,R) in each time
step from the distribution G mentioned in the body text to compute the dual values in each iteration. The same distribution
G is also used to generate representative states for the methods of linear programming approximation and backward dynamic
programming. In LP, we simulate 300 state pairs and thereby solve a linear program with 300 constraints. In Backward DP,
we simulate 1.5× 104 states for carrying out the least square estimation. The numbers in the parentheses in the column next
to “Dual Values” are the standard errors of the dual estimations. The percentage gaps in the last column of the table are
computed according to the ratio of (Primal − Dual)/Primal. The default parameters used in the experiments are λ = 10 and
δ = 1. The values of other parameters are reported in E. All the computation experiments are conducted on a PC equipped
with an Intel Xeon 32-core 2.93 GHz CPU and 12.0 GB of RAM. The computation environment is Windows 7 and MATLAB
R2017a and parallel pool. The average computational time is 1416.1s per iteration.
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paths of random noises (εt,ηt, t = 1, · · · , 20). The outcome is reported in the first row of
each subpart. Meanwhile, we compute the dual value associated with each heuristic policy
in the second row of the column “Dual Values”. All the approximations have significant
duality gaps, which show that the performance of all the policies are not satisfactory.

Consistent with the theoretical convergence results in the last sections, the dual values
increase as we run more iterations of the DDP algorithm, no matter which approximate
heuristic we start with. These dual values thereby provide a sequence of increasingly tighter
lower bounds to the true value of the problem. The algorithm terminates after several rounds
of iterations when it produces no essential changes on the dual value. More precisely, the
termination criterion is that the dual value in the penultimate iteration falls within the 95%
confidence interval of the dual value in the terminal iteration. We then apply the direct
policy evaluation scheme (cf. Table IV in D.1) to estimate the value of the policy obtained
through our DDP algorithm. As shown by the last row of each subpart, the dual gap of the
improved policy shrinks down to around 1%, strongly suggesting that the new policy is very
close to the optimality. In addition, we find that, irrespective of the initial approximation
that we start with, all the final outcomes that the DDP algorithm converges to are identical.
Denote hereafter the policy we obtain by SDDP .

In this experiment, we use the DC programming to solve the inner optimization problem
in the dual formulation. The consideration underlying this choice is that the penalty z, one
part of the objective function of the inner optimization problem (cf. (19) and (25)), takes a
very special form of functional difference. After decomposing the objective function to the
difference of two convex functions in St, we rely on sequential convex relaxation to transform
the optimization job down to solving a sequence of convex programs. The literature has
established the property of global convergence for this approach; that is, starting from any
given initial point, the sequence generated by it converges to a solution to DC programs that
satisfies the Karush-Kuhn-Tucker condition; see Yuille and Rangarajan (2003), Le Thi and
Pham Dinh (2005), Sriperumbudur and Lanckriet (2009), Lu (2016), Le Thi and Pham Dinh
(2018), and Boyd and Vandenberghe (2004). A brief introduction on the DC programming
is also provided in Appendix C.

While in theory it is possible that the above sequential convex programming may only
lead to local optimal solutions for the inner optimization problem, we need to stress that the
numerical evidence shows that does not affect the optimality of SDDP reported in Table 1.
To see this, we develop a sanity check in the following remark.

Remark 5.1 At the termination of the DDP algorithm, we expand the output dual value
function Vt to its first order, i.e., for t = 0.1, · · · , T − 1,

Vt(X,R) ≈ Vt(X
0,R0) +∇xVt(X

0,R0)(X−X0) +∇RVt(X
0,R0)(R−R0) (40)

where (X0,R0) is a state pair that we fix in advance, and ∇x and ∇R are the gradients
with respect to X and R, respectively. Note that Vt is indeed a linear combination of the
basis functions in (39). Hence, the function on the right hand side of (40) is explicitly
known and it is linear in the variable R. In Table 1 (cf. the dual value in the last row of
each subpart), we use Vt to construct a duality to assess the quality of SDDP . Alternatively
we may substitute the linear function on the right-hand side of (40) into (8) to construct
another penalty. Note that the inner optimization problem in the resulting dual formulation
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will become a convex program, which is globally solvable. So we do not need to worry about
the issue of local solutions for this new duality. It turns out that the dual value we obtain in
this way is 269.47 with a standard deviation 0.25, which is very close to the ultimate dual
values reported in Table 1. This strongly suggests that the sequential convex programming
procedure can effectively lead us to find a policy with adequate performance.

Recall that Theorem 4.5 reveals a crucial trade-off between the model complexity and the
sampling adequacy facing us in the implementation of the DDP algorithm; that is, given the
number of basis functions M , we need a sufficiently large number of samples L to ensure the
convergence of the DDP algorithm. Both Table 2 and Figure 1 corroborate this conclusion.
In Table 2, we can easily see that, for a fixed basis function set, there exists a minimum
L for the DDP algorithm to converge. Moreover, as the number of basis functions used in
the approximation increases, this critical L tends to become larger. Figure 1 empirically
examines how fast this minimum L grows with M using the log-log plot. The slope suggests
that the number of representative states L should be at least as large asO(M3/2) to ensure the
convergence of the DDP algorithm. Note that this rate is much smaller than the theoretical
rate established in Theorem 4.5. We leave the research on tightening the bound to future
work.

L

M 500 1000 2000 3000 4000 5000 6000 7000 8000 9000

6 ×
√ √ √ √ √ √ √ √ √

11 × × ×
√ √ √ √ √ √ √

15 × × × × ×
√ √ √ √ √

21 × × × × × × ×
√ √ √

24 × × × × × × × ×
√ √

Table 2: The convergence performance of the DDP algorithm under different choices of L and M .
If it converges, we input

√
in the corresponding entry; otherwise, we use ×. The basis function

sets we choose for each row are {1, (Xi)i=1,2, (Rk)k=1,2,3},
{1, (Xi)i=1,2, (Rk)k=1,2,3, (X2

i )1≤i≤2, (R2
k)1≤k≤3},

{1, (Xi)i=1,2, (Rk)k=1,2,3, (XiXj)1≤i,j≤2, (RkRl)1≤k,l≤3},
{1, (Xi)i=1,2, (Rk)k=1,2,3, (XiXj)1≤i,j≤2, (RkRl)1≤k,l≤3, (RkXj)1≤k≤3, 1≤j≤2} and

{1, (Xi)i=1,2, (Rk)k=1,2,3, (XiXj)1≤i,j≤2, (RkRl)1≤k,l≤3, (RkXj)1≤k≤3, 1≤j≤2, (Rk
√
Rk)1≤k≤3},

respectively.

Examining SDDP will shed more insights into this improved policy. In Figure 2, we
compare it with SLQ, which is the policy derived from the simplified auxiliary problem, by
simulating them on the same sample paths of the signal process Xt. Let us assume that
the trader receives a large signal at t = 1, i.e., the initial value X1 is large. The top panel
displays the evolution of the two-dimensional signal Xt = (X1

t , X
2
t ) over time under different
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Figure 1: The regression result of the critical log(L) against log(M). As shown in Table 2, L
has to be as large as [1000, 3000, 5000, 7000, 8000], respectively, for M = [6, 11, 15, 21, 24] to
ensure the convergence of the DDP algorithm. The red straight line is the linear extrapolation
between log(L) and log(M). We have approximately log(L) = 1.5 log(M) + 4.3.

autocorrelation coefficient δ. The other three rows illustrate how these two policies respond
to the changes in Xt in terms of the respective purchase amounts of the three assets. We
can see that, in response to the “good” initial signal, the suboptimal strategy SLQ (the
red curves in Figure 2) immediately increases its purchase. This behavior is economically
sensible. Under our choice of C in the dynamic of (32), a high current value of X implies
that the prices of the assets are likely to move up in the future. To avoid the high transaction
cost that the trader might pay consequently, she would like to buy more at the current price
immediately.

However, this policy is suboptimal in the presence of such market frictions as the price
impact and the no-sale constraint. The blue curves in the figure illustrate how the optimal
policy SDDP should behave. Interestingly, it executes transactions much more slowly in
response to the same signal X compared with SLQ. Moreover, the autocorrelation of the
signal process accentuates the difference in the trading speeds between the two policies. As
we increase the value of δ from the left column to the right in Figure 2, SLQ and SDDP

become distinct. We also examine the effect of the temporary impact by changing λ in
the experiments. The green curves are corresponding to the case in which λ = 100. In
comparison with the red curves (λ = 0), the trader further smooths her transactions in order
to avoid the excessive costs associated with the temporary impact of trading (cf. the first
term in (34)).

5.2 Inventory Management with Lost Sales and Lead Time

In this section, we consider a single-item inventory management problem with stochastic
demands, a constant lead time and lost sales. Assume that a manager has a finite planning
horizon of T periods. In period t, t = 1, 2, · · · , T , a random demand amounting to dt will
arise. All the demands across different periods are supposed to be independent and have
the identical distribution. The manager needs to use the current inventory to meet the
demand in each period and meanwhile determines an amount of at to order. Denote L to
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Figure 2: A simulation comparison between two policies SDDP and SLQ. We simulate 10,000
sample paths for random noises (εt,ηt, t = 1, · · · , 20) to drive the model. Let X1 = [3, 3]tr.
The top panel plots the average values of X in different time periods over all these sample
paths. As we increase δ, the decay in signal X slows, indicating a stronger autocorrelation
in the information process. The remaining rows display the average quantities of assets that
the trader needs to buy under the policies SDDP and SLQ across these 10,000 paths of X
during each period.
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be the order lead time; that is, the order placed in period t will arrive in period t + L.
Hence, the manager’s decision making should be based on a state vector of L components
xt = (x0,t, x1,t, · · · , xL−1,t), where x0,t is the amount of the current inventory in period t and
xl,t is the order arriving in the subsequent periods t + l for l = 1, · · · , L− 1. If the current
inventory is not sufficient, we assume that the unfulfilled demands will be immediately
lost. After receiving x1,t at the beginning of the next period, the inventory level transits
to (x0,t − dt)+ + x1,t and the manager starts a new decision-making loop. From the above
discussion, we can easily see that the state vector for period t+ 1 should be given by

xt+1 = ((x0,t − dt)+ + x1,t, x2,t, · · · , xL−1,t, at). (41)

Note that this dynamic is not linear.
The manager faces three types of costs: procurement cost associated with orders, inven-

tory holding cost, and lost-sale penalty. For notational simplicity, we ignore the first type of
cost in our model by letting the unit cost of procurement be 0. As argued in Janakiraman
and Muckstadt (2004), this assumption will not hurt the generality of the setup. Let h and
p denote the marginal cost of holding inventory and the penalty of lost sales, respectively.
Then the manager attempts to minimize the discounted total cost over T+L periods, namely,

min
at∈Z+,

1≤t≤T+L

E
[ T+L∑
t=1

γt
(
h(x0,t − dt)+ + p(dt − x0,t)

+
) ]
, (42)

where
q(xt, dt) := h(x0,t − dt)+ + p(dt − x0,t)

+

is the sum of the inventory cost and the lost-sale penalty in period t, γ ∈ (0, 1) is the discount
factor used by the manager, and Z+ stands for the set of all nonnegative integers.

The lost-sales model was first formulated in Karlin and Scarf (1958) and further explored
in Morton (1969, 1971). It is well known that the model is intractable, especially for a
large lead time L. Zipkin (2008a,b) presents insightful structural analysis on this standard
problem and, based on that, tests several plausible heuristics. He finds that the following
myopic policy yields analytical value functions and performs reasonably well. Rather than
considering the entire time horizon, the myopic policy chooses the order quantity at in period
t to minimize the cost from period t to period t+ L. That is, letting

amy
t = arg min

at∈Z+

E

[
t+L∑
s=t

γs−tq(xs, ds)

]
. (43)

Note that the order at arrives in period t+L and has nothing to do with the inventory prior
to that period. Thus we can easily show that the optimization in (43) is equivalent to

amy
t = arg min

at∈Z+

E[γLq(xt+L, dt+L)]. (44)

This policy apparently neglects the evolution of the inventory system after period t+ L.
Relatedly, Chen, Dawande, and Janakiraman (2014) develop a new numerical approach

to approximate the optimal value function of this example using a selected number of points

28



in a bounded rectangular domain. Their method hinges on the L]-convex property of the
value function. Bu, Gong and Yao (2017) analyze the asymptotic optimality of a given
heuristic in an infinite-horizon lost-sales inventory model with positive lead time. Brown
and Smith (2014) apply the information relaxation based dual method to assess the above
myopic policy.

The following numerical experiments test the performance of the DDP algorithm by using
it to assess and improve several heuristic policies. We assume that the stochastic demand
dt follows a geometric distribution with mean m. As pointed out by Zipkin (2008a), this
distribution is more likely to produce extreme demand scenarios. Two possible lead times,
L = 4 and L = 10, are considered. As in the previous optimal execution problem, we need
to choose a proper state selector G to sample the representative states xt in each period t.
Let θ = h/(p+ h) and define

sl = min

{
s : P

(
L∑
m=l

dm > s

)
≤ θ

}

for l = 0, · · · , L − 1. Both Morton (1969) and Zipkin (2008a,b) show that, starting with
initial state x1 = 0, the inventory process under the optimal policy will never leave the region

Xt =

{
xt ≥ 0 :

L−1∑
m=l

xm,t ≤ sl, l = 0, · · · , L− 1

}
. (45)

In light of these results, we take G to be the discrete uniform distribution over the compact
set X .

In the interest of space, we defer the explicit expressions of all the basis functions used
in this section to Appendix E. To evaluate the penalty function, we need to calculate the
expectations of these basis functions. This step may be computationally expensive when L is
large. As mentioned in Section 4, we suggest using low-discrepancy sequences from the QMC
literature to develop effective approximations. A detailed explanation of this approximation
can also be found in E.

Along each sample path of demand dt = (dt, dt+1, · · · , dT+L)tr, the DDP algorithm solves
the following deterministic inner optimization problem

J(xt,dt) := inf
a∈ZT−t+1

+

T+L−t∑
s=0

{
γsq(xt+s, dt+s, at+s) + zt(a,dt)

}
(46)

at each time step t for the dual value determination. It can be reduced to an integer
DC program. Maehara, Marumo, and Murota (2018) employ a special form of continuous
relaxation (known as “lin-vex extension” in their paper) to find an exact solution to DC
optimization programs with integer constraints. However, to save the computational effort,
we take an alternative approach here by simply relaxing the integer constraint a ∈ ZT−t+1

+

to a ≥ 0 when solving (46). The relaxation enables us to apply the sequential-convex-
programming method in C to obtain a lower bound for J(xt,dt). The numerical experiments
show that the convergence of the DDP algorithm is not affected by this continuous relaxation.
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Table 3 displays the performance of our DDP algorithm in improving some heuristic poli-
cies. In addition to the myopic policy given in (47), we also consider several alternative
approximate policies as follows:

• Lookahead. The above myopic policy ignores the long run impact of the current order.
To remedy this, we may introduce a Ṽ to approximately capture the future impact of
the present order. A lookahead policy stems from solving

aLA
t = arg min

at∈Z+

E

[
t+L∑
s=t

γs−tq(xs, ds) + γL+1Ṽ (xt+L+1, dt+L+1)

]
. (47)

In the experiment, we try the total cost function at time t+ L+ 1, q(xt+L+1, dt+L+1),
as the approximation Ṽ .

• Linear programming approximation. We omit the details here because the idea is
similar to the LP approximation in the previous example.

It is worth mentioning that this problem is solvable through the associated Bellman
equation when the lead time L = 4. Using (45), the total number of the states that we need
to visit in each period in this case is 60,129. By brute-force searching for the best order
quantities in all these states, we find that the true optimal value of the problem when L = 4
should be 541.82 under the parameter values we set up for the experiment. The structure of
Table 3 remains similar to that of Table 1. We can see that the DDP algorithm manages to
significantly reduce down the duality gaps of all these heuristics.

Figures 3 and 4 help us gain more insight about where the improvement of the policy
that the DDP finally converges to comes from. We simulate the inventory system under
both the myopic policy and the policy obtained from the DDP method. The two types of
costs, the inventory holding cost

E
[ T+L∑
t=1

γth(x0,t − dt)+
]

and the lost sales penalty cost

E
[ T+L∑
t=1

γtp(dt − x0,t)
+
]
,

are calculated and compared in the figure. The myopic policy focuses on the short-term
performance and neglects the long-run impact of orders on the inventory level. Therefore
it incurs a smaller lost-sale penalty than the optimal one. However, this comes at the
expense of the inventory holding cost. In contrast, the improved policy that resulted from
the DDP algorithm strikes a better balance between these two costs. The inventory cost
under it is smaller than what the myopic policy causes, which leads to a better overall cost
performance. Figure 5 further compares the average inventory level for a system controlled
by both policies and subject to the same demand shocks over the time horizon. It clearly
demonstrates that the system tends to build up more inventory, thus incurring more holding
costs, if the manager uses the myopic policy.
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L=4

Approximation Iteration Dual Values (SE) Primal Values (SE) Gap

0 563.72 (0.42) 4.36%
Myopic 1 539.16 (0.38) - - -

2 539.86 (0.09) 542.00 (0.43) 0.39%
3 539.88 (0.08)

0 560.13 (0.41) 3.63%
Lookahead 1 539.78 (0.36) - - -

2 539.88 (0.08) 542.13 (0.43) 0.41%
3 539.89 (0.08)

0 566.31 (0.50) 5.00%
Linear 1 537.86 (0.40) - - -

2 539.80 (0.08) 542.08 (0.40) 0.41%
3 539.84 (0.08)

L=10

Approximation Iteration Dual Values (SE) Primal Values (SE) Gap

0 829.63 (0.28) 7.36%
Myopic 1 768.58 (0.36) - - -

2 770.93 (0.08) - - -
3 771.80 (0.08) 779.36 (0.29) 0.96%
4 771.89 (0.07)

0 827.14 (0.30) 7.04%
Lookahead 1 768.91 (0.36) - - -

2 771.10 (0.08) - - -
3 771.83 (0.08) 779.54 (0.29) 0.99%
4 771.84 (0.08)

0 844.28 (0.30) 9.50%
Linear 1 764.10 (0.35) - - -

2 770.59 (0.09) - - -
3 771.61 (0.08) - - -
4 771.89 (0.08) 779.80 (0.30) 1.02%
5 771.83 (0.08)

Table 3: Convergence results of the DDP algorithm under different initial policies in the example of inventory management.
The default parameters used in this experiment are {m = 4, h = 1, p = 9, T = 30}. Two lead times are implemented, i.e.,
L = 4 and L = 10. The three types of heuristic policies used as the inputs are Myopic, Lookahead, and Linear. We sample
500 states for L = 4 and 1000 states for L = 10 in each time step from the distribution G to compute the dual values. In LP,
we simulate 100 states to set up the corresponding constraints. All computation experiments are conducted on a PC equipped
with an Intel Xeon 32-core 2.93 GHz CPU and 12.0 GB of RAM. The computation environment is Windows 7 and MATLAB
R2017a and parallel pool. The average computational time is 323.6s per iteration for L = 4 and 2365.1s for L = 10.
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Cost comparison with parameter: L=4, G(4), p=9
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Cost comparison with parameter: L=4, G(4), p=19
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Cost comparison with parameter: L=4, G(9), p=9
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Cost comparison with parameter: L=4, G(9), p=19
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Figure 3: Cost comparison in L = 4. We compare the holding and penalty costs under three
policies: the myopic policy amy, the policy improved from the DDP algorithm aDDP , and
the optimal one aop. We simulate 10,000 sample paths of random demands and evaluate
both amy and aDDP based on the same set of sample paths. We use brute-force searching to
solve the Bellman equation to obtain the optimal value for aop. G(4)/G(9) stands for the
geometric random demand with mean 4/9. In the legend of each subfigure, we report the
total cost of each policy and the corresponding standard error in the brackets. Note that
aDDP , the resulted policy from our DDP algorithm, behaves exactly the same as the optimal
one.
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Cost comparison with parameter:L=10,G(4),p=9
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Cost comparison with parameter: L=10, G(4), p=19
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Cost comparison with parameter: L=10, G(9), p=9
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Cost comparison with parameter: L=10, G(9), p=19
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Figure 4: Cost comparison in L = 10. Note that we do not report the costs associated with
the optimal policy because it is impossible to apply the Bellman equation to solve for the
optimal solution due to the high dimensionality.
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Figure 5: Average inventory level for a system controlled by myopic policy amy and improve
policy aDDP . The parameter settings are: L = 10, p = 19, T = 30 and the geometric
demand distribution with mean 4. In this figure we sample 10,000 random demands {dt, 1 ≤
t ≤ T + L}. Under the same sample path, we run the myopic and improved policies. The
two curves in the figure display the average inventory level at each time step across all the
sampled demands.

33



6 Conclusions

In this paper we present a duality-driven iterative approach (DDP) for solving a general SDP
problem. The duality gap yielded by the method can be used to assess the performance of a
given policy. More importantly, repeatedly applying the dual operation on the basis of the
technique of information relaxation will lead to policy improvement and convergence to the
optimality. To implement the DDP, we also develop a regression Monte Carlo method. In
conjunction with such techniques as DC programming and parallel computing, our method
demonstrates numerical effectiveness and accuracy in dealing with multidimensional complex
SDP problems.
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Appendix

A Proofs of Main Results in Section 3.1

Before proving Proposition 3.2, we establish a Bellman equation-like characterization of the
value of the inner optimization problem in the dual formulation. Let

Jt(ξ|t, xt) = inf
a∈A|t

[
T−1∑
s=t

rs(xs, as, ξs) + rT (xT ) + zt(a, ξ)

]

with zt(a, ξ) being defined as in (8). We have

Lemma A.1 For 0 ≤ t ≤ T − 1,

Jt(ξ|t, xt) = inf
at∈At

{
E[rt(xt, at, ξt) +Wt+1(xt+1)|xt = x]−Wt+1(xt+1) + Jt+1(ξ|t+ 1, xt+1)

}
.

Proof of Lemma A.1. Note that Jt(ξ|t, xt) admits the following representation

Jt(ξ|t, xt) = inf
at∈At

{
rt(xt, at, ξt) + E[rs(xs, as, ξs) +Ws+1(fs(xs, as, ξs))]− (rs(xs, as, ξs)

+Ws+1(fs(xs, as, ξs))) + inf
a∈A|(t+1)

[ T−1∑
s=t+1

rs(xs, as, ξs) + rT (xT ) + zt+1(a, ξ)
]}
.

The conclusion trivially follows. �

Proof of Proposition 3.2. By the definition of the dual operator D, we have

DWt(x) = E

[
inf
a∈A|t

[
T−1∑
s=t

rs(xs, as, ξs) + rT (xT ) + zt(a, ξ)

] ∣∣∣xt = x

]
= E

[
Jt(ξ|t, xt)

∣∣∣xt = x
]
.(48)

According to Lemma A.1, for any action at ∈ At,

Jt(ξ|t, xt) ≤ E[rt(xt, at, ξt) +Wt+1(xt+1)|xt]−Wt+1(xt+1) + Jt+1(ξ|t+ 1, xt+1).

Therefore,

E
[
Jt(ξ|t, xt)

∣∣∣xt = x
]
≤ E

[
E[rt(xt, at, ξt) +Wt+1(xt+1)|xt]−Wt+1(xt+1) + Jt+1(ξ|t+ 1, xt+1)

∣∣∣xt = x
]
.(49)

Note that, by the iterated law of conditional expectation, we have

E
[
E[Wt+1(xt+1)|xt]−Wt+1(xt+1)|xt = x

]
= 0.

Moreover,

E[Jt+1(ξ|t+ 1, xt+1)|xt] = E[E[Jt+1(ξ|t+ 1, xt+1)]|xt = x] = E[DWt+1(xt+1)|xt = x].
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Both equalities lead to that the right hand of (49) is equal to

E[rt(xt, at, ξt) +DWt+1(xt+1)|xt = x]

In conjunction with (48), we have

DWt(x) ≤ inf
at∈At

E[rt(x, at, ξt) +DWt+1(ft(x, at, ξt))].�

Proof of Theorem 3.3. (i) To show this, we need the following two claims:

• For any sequence W = (W0,W1, ...,WT ), DnW is a subsolution for any n ≥ 1.

• For a subsolution sequence W = (W0,W1, ...,WT ), Wt : Rn → R, we have

Wt(x) ≤ (DW )t(x) for 0 ≤ t ≤ T − 1

and WT (x) = (DW )T (x) = rT (x).

According to Proposition 3.2, DnW is a subsolution for any n ≥ 1. Now we turn to
the second claim. It suffices to prove that, for any sequence of subsolution W , we have
Jt(ξ|t, xt) ≥ Wt(x) for all t ≥ 0 with Jt(ξ|t, xt) defined in Lemma A.1. Indeed, invoking (48),

DWt(x) = E
[
Jt(ξ|t, xt)

∣∣∣xt = x
]
≥ Wt(x).

We prove the claim of J ≥ W by performing induction on t. For t = T , it is clearly true
since JT = rT = WT by the definition. Suppose for s ≥ t+1, the claim Js ≥ Ws holds. Then
at time t, according to Lemma A.1,

Jt(ξ|t, xt) = inf
at∈At

{
E[rt(xt, at, ξt) +Wt+1(xt+1)]−Wt+1(xt+1) + Jt(ξ|t, xt+1)

}
≥ inf

at∈At

E[rt(xt, at, ξt) +Wt+1(xt+1)].

As W is a subsolution sequence, we have

Jt(ξ|t, xt) ≥ inf
at∈At

E[rt(xt, at, ξt) +Wt+1(xt+1)] ≥ Wt(xt).

That completes the induction loop.

(ii) Consider a subsolution sequence W such that DW = W . We use induction again to
prove this part. At the last period T , we know that (DW )T (x) = rT (x) for all x according
to the definition of the operator D. Hence,

WT (x) = (DW )T (x) = rT (x) = VT (x).

In words, W and V coincide at T . Now we assume this claim also holds for s ≥ t + 1 for
some t. By Proposition 3.2, the sequence DW constitutes a subsolution. Therefore,

(DW )t(x) ≥ inf
at∈At

E[rt(xt, at, ξt) + (DW )t+1(ft(xt, at, ξt))|xt = x]

= inf
at∈At

E[rt(x, at, ξt) +Wt+1(ft(x, at, ξt))].
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In addition, the right hand side of the above inequality equals to, by the induction hypothesis,

inf
at∈At

E[rt(x, at, ξt) + Vt+1(ft(x, at, ξt))] = Vt(x).

where the last equality is due to the fact that V , as the true value function, should satisfy the
Bellman equation. These lead to (DW )t(x) ≥ Vt(x). On the other hand, (DW )t(x) ≤ Vt(x)
because of the weak duality property. Thus, we should have (DW )t(x) ≤ Vt(x), which
completes the induction loop.

(iii) First, we claim that, if for some n and t the equality (DnW )t+1(x) = Vt+1(x) holds for
all x, then

(DkW )t(x) = Vt(x),

for any k ≥ n + 1. This claim can be easily proved by induction. We omit the detail here
for the interest of space. Once this claim is established, noting that (D1W )T (x) = VT (x) is
true, it is easy to see that (D2W )T−1(x) = VT−1(x) must be true for all state x. Using the
above claim again, we can reach the following conclusion:

(D3W )T−2(x) = VT−2(x) and (D3W )T−1(x) = VT−1(x).

Repeatedly using the above argument leads to, for a general k,

(DkW )t(x) = Vt(x) for t ≥ T + 1− k.

In particular, when k = T + 1, we have (DT+1W )t(x) = Vt(x) for t ≥ 0. The theorem
statement is proved. �

B The DDP Method in LQC

We need the following technical lemma in calculating the duality of LQC.

Lemma B.1 We consider the quadratic programming

Jt =
T−1∑
s=t

(
xtrs Qsxs + atrt Rtat + 2αtrt xt + 2βtrt at

)
+ xtrTQTxT ,

with the equality constraints
xt+1 = Dtxt +Btat + ξt,

where ξt ∈ Rn, αt ∈ Rm, βt ∈ Rm are given vectors, Qt ∈ Rn×n and Rt ∈ Rm×m are
positive semi-definite symmetric and positive definite symmetric matrix, respectively. Then,
the optimal solution and minimum cost are given by

at = −Ltxt − θ−1
t mt,

Jt = xtrt Ktxt + 2ntrt xt +
T−1∑
s=t

(
ξtrs Ks+1ξs + 2ntrs+1ξs −mtr

s θ
−1
s ms

)
,
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with

mt = Btr
t (Kt+1ξt + nt+1) + βt,

nt = (Dt −BtLt)
tr[nt+1 +Kt+1ξt] + αt − Ltrt βt, 0 ≤ t ≤ T − 1, nT = 0.

θt, Lt and Kt are defined as

Kt = Dtr
t

(
Kt+1 −Kt+1Btθ

−1
t Btr

t Kt+1

)
Dt +Qt, t = 0, · · · , T − 1. KT = QT .

Lt = θ−1
t Btr

t Kt+1Dt, θt = Rt +Btr
t Kt+1Bt.

Proof of Lemma B.1. This statement can be established as a straightforward application of
the well known analytical expression of the solution to a quadratic program with equality
constraints; see Nocedal and Wright (1999), Chapter 16. �

Now we proceed to demonstrate how to apply the DDP algorithm to the LQC problem in
detail.

− Problem description: Solve

min
α∈AF

E
[ T−1∑
t=0

(
xtrt Qtxt + αtrt Rtαt

)
+ xtrTQTxT

]
,

s.t. xt+1 = Dtxt +Btαt + ξt, t = 0, · · · , T − 1.

− Solution: It is well known that the above control problem admits closed form solutions.
For t = 0, · · · , T − 1, the optimal policy should be α∗t (x) = −Ltx, where the matrix
Lt ∈ Rm×n is given by

Lt = (Rt +Btr
t Kt+1Bt)

−1Btr
t Kt+1Dt.

Here all matrices Kt ∈ Rn×n are positive semidefinite symmetric, and we can use the
following recursive relationship to determine them:

KT = QT ;

Kt = Dtr
t

(
Kt+1 −Kt+1Bt(Rt +Btr

t Kt+1Bt)
−1Btr

t Kt+1

)
Dt +Qt, t = 0, · · · , T − 1.

Under such a linear policy, the optimal cost function equals

Vt(x) = xtrKtx+
T−1∑
s=t

E
[
ξtrs Ks+1ξs

]
.

Proof of Proposition 3.4. Consider a policy of the linear form

αt(x) = Ptx+ Et. (50)

The subsequent calculation shows that we can achieve the optimal policy and value function
of the LQC problem in two iterations by the DDP algorithm.
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1. First iteration. Under linear policy (50), it is easy to verify that the cost-to-go
function is quadratic with respect to states:

W 0
t (x) = xtrHtx+ 2F tr

t x+ Ct,

with

Ht = Qt + P tr
t RtPt + (Dt +BtPt)

trHt+1(Dt +BtPt), HT = QT ,

Ft = P tr
t R

tr
t Et + (Dt +BtPt)

trHt+1BtEt, FT = 0,

Ct = Ct+1 + Etr
t RtEt + Etr

t B
tr
t Ht+1BtEt + E[ξtHt+1ξt] + 2F tr

t+1BtEt, CT = 0.

Given W 0
t , we can construct the penalty function z1

t (a, ξ) by

z1
t (a, ξ) =

T−1∑
s=t

{
E[W 0

s+1(Dsxs +Bsas + ξs)]−W 0
s+1(Dsxs +Bsas + ξs)

}
=

T−1∑
s=t

{
−2ξtrs (Fs +Hs+1(Dsxs +Bsas))− ξtrs Hs+1ξs + E[ξtrs Hs+1ξs]

}
.

Then, the dual value in the first iteration satisfies

V 1
t (x) = E

[
inf
a∈A|t

{ T−1∑
s=t

(
xtrs Qsxs + atrs Rsas − 2ξtrs (Fs +Hs+1(Dsxs +Bsas))

−ξtrs Hs+1ξs + E[ξtrs Hs+1ξs]
)

+ xtrTQTxT

}∣∣∣xt = x
]
. (51)

Using Lemma B.1, we can explicitly solve the inner optimization problem in (51). It
is a quadratic program. That leads to

V 1
t (x) = Vt(x)− E

[
T−1∑
s=t

mtr
s (Rs +Btr

s Ks+1Bs)
−1ms

]
, t = 0, · · · , T − 1,

with

mt = Btr
t (Kt+1 −Ht+1)ξt +Btr

t nt+1,

nt = (Dt −BtLt)
tr[nt+1 + (Kt+1 −Ht+1)ξt], 0 ≤ t ≤ T − 1, nT = 0.

2. Second iteration. Note that V 1
t (x) is represented as the optimal value function Vt(x)

minus some constant. Hence, it is easy to see that z2
t (a, ξ) is the optimal penalty

function if we use V 1
t (x) to construct it. From this observation, we can calculate out

that the dual value after the second iteration satisfy

V 2
t (x) = Vt(x), α2

t (x) = α∗t (x).�
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C DC Optimization

In this appendix we briefly review some primary facts about DC functions and the related
optimization problem. A function f is called a DC function if there exist convex functions,
g and h: Rn → R such that f can be decomposed to the difference between g and h:

f(x) = g(x)− h(x), ∀x ∈ Rn.

The set of DC functions has a very rich structure. For instance, Lemma C.1 points out
that the class of DC functions is closed under some algebraic operations such as addition,
multiplication, and max/min.

Lemma C.1 (Theorem 4.1 in Horst, Pardalos, and Thoai (2000)) If f1 and f2 are
two DC functions, then the following functions are also DC:
(a) λ1f1(x) + λ2f2(x) for any constants λ1 and λ2,
(b) max{f1(x), f2(x)} and min{f1(x), f2(x)},
(c) f1(x)f2(x).

The standard form of a DC programming problem is given by

min f0(x)− g0(x) (52)

s.t. fi(x)− gi(x) ≤ 0, i = 1, · · ·m,
x ∈ X ,

where X ∈ Rn is a nonempty closed convex set, and fi’s, gi’s are all convex in X . Recently a
sequential-convex-programming based DC algorithm and its variations emerge as an effective
approach to solving the problem. The idea of this approach is to create a sequence of values
{xk} by solving convex programs sequentially so that {xk} converges to a local minimum of
(52). Given a convex function g, a real vector v is called its subgradient at x if v satisfies

g(y) ≥ g(x) + vT (y − x) for all y,

where vT is the transpose of vector v. Let ∂g(x) be the set of all the subgradients of function
g at x. Using this notation, we can present the overarching structure of the method in the
following table:

Table II: A Sequential Convex Programming Method

• Step 0. Choose x0 ∈ X arbitrarily. Set k = 0.

• Step 1. Compute skgi ∈ ∂gi(x
k) for i = 0, 1, · · · ,m.

• Step 2. Solve

xk+1 ∈ arg min
y∈C(xk,{skgi}

m
i=1)

{
f0(y)− [g0(xk) + (skg0)T (y − xk)]

}
with the feasible set C(xk, {skgi}

m
i=1) being given by

C(xk, {skgi}
m
i=1) =

{
y ∈ X : fi(y)− [gi(x

k) + (skgi)
T (y − xk)] ≤ 0, i = 1, · · · ,m

}
.

• Step 3. Set k ← k + 1 and go to Step 1.
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Note that in Step 2, we linearize all the convex functions gi, i = 1, · · · ,m, through their
subgradients, thereby relaxing the original problem into a tractable convex program. A
number of literature shows that the resulted sequence {xk} converge to a KKT point of (52)
under some regularity conditions; see, e.g., see Yuille and Rangarajan (2003), Sriperumbudur
and Lanckriet (2009), Lu (2016), and Boyd and Vandenberghe (2004).

D Convergence of the Monte Carlo DDP Algorithm

D.1 Review of the algorithm

Let us go through the major steps of the regression-based DDP algorithm proposed in Section
4. It is summarized in the following table.

Table III: Implementation Details of Regression Based Monte Carlo DDP

• Step 0. Initialization:

– Step 0a. Choose a sequence of distribution functions (G1, · · · , GT ) and a set of basis
functions {ψ1, · · · , ψM}.

– Step 0b. Simulate states for each period t from these distributions: x
(l)
t ∼ Gt for

1 ≤ l ≤ L and 1 ≤ t ≤ T .

– Step 0c. Construct the initial approximation

V̂
0

t (x) :=

M∑
m=1

β̂0
t,mψm(x), 1 ≤ t ≤ T − 1.

One way to do it is to evaluate the value of a policy α of being at state x
(l)
t for all l and

t and use the basis functions to extrapolate these values to the entire state space. See
Section 9.1 of
Powell (2011) for the discussion on sampling and approximating the value of a policy.

• Step 1. Use the regression method to implement the dual iteration:

– Step 1a. Starting with the approximation from the last iteration:

V̂
n−1

t (x) :=
M∑
m=1

β̂n−1
t,m ψm(x), 1 ≤ t ≤ T − 1,

define a penalty function sequence such that znT (a, ξ) = 0 and

znt (a, ξ) =
∑T−1

s=t

{
E[rs(xs, as, ξs) + V̂

n−1

s+1 (fs(xs, as, ξs))]− (rs(xs, as, ξs) + V̂
n−1

s+1 (fs(xs, as, ξs)))
}

for any 0 ≤ t ≤ T − 1, with a = (a0, · · · , aT−1) ∈ A and ξ = (ξ0, · · · , ξT−1).
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– Step 1b. At each point x
(l)
t , simulate one path of ξ(l)|t = (ξ

(l),t
t , ξ

(l),t
t+1 , · · · , ξ

(l),t
T−1) inde-

pendently and solve the optimization program (25-26) for J
(l)
t,n.

– Step 1c. Use the least-square method to fit the data (x
(1)
t , J

(1)
t,n), · · · , (x(L)

t , J
(L)
t,n ) to obtain

a new expansion on the dual:

V̂
n

t (x) :=

M∑
m=1

β̂nt,mψm(x), 1 ≤ t ≤ T − 1,

where β̂nt = (B̂t
ψψ)−1B̂t,n

Jψ whenever B̂t,n
ψψ is invertible. Here the (i, j)-element of matrix

B̂t,n
ψψ and the k-th element of vector B̂t,n

Jψ are defined in (23) and (24), respectively. See

the discussion below for the case in which the numerical inversion B̂t,n
ψψ is not stable.

– Step 1d. At x0, simulate L independent paths of ξ(l)|0 = (ξ
(l),0
1 , ξ

(l),0
2 , · · · , ξ(l),0

T ), 1 ≤
l ≤ L, and solve the optimization program (25-26) with t = 0 for J

(l)
0,n. Let

V̂
n

0 (x0) =
1

L

L∑
l=1

J
(l)
0,n.

• Step 2. Let n = n+ 1 and go to Step 1.

In the implementation of Step 1c, we find that B̂t,n
ψψ could be nearly singular for some

sampled (x
(1)
t,n, · · · , x

(L)
t,n ). That will result in numerical instability on β̂nt , and in turn, the

final dual output V̂
T+1

0 . To prevent V̂
T+1

0 from being extremely large or small due to the

singularity of B̂t,n
ψψ, we truncate the output at a pre-specified sufficiently large K in the

numerical experiments, i.e.,

V̂
T+1

0 (x) = max

{
−K,min

{
K,

1

L

L∑
l=1

J
(l)
0,T+1

}}
.

Lemma D.6 provides an upper bound on the probability that the matrix B̂t,n
ψψ is close to

singularity. As both L and M tend to infinity, the probability of near-singular B̂t,n
ψψ will

vanish.
The output of our regression based algorithm {V̂t(x), 0 ≤ t ≤ T} can also be used

to simulate for an upper-bound estimate for the true value of the original problem. The
key steps are summarized in Table IV. Note that all the policies are suboptimal. It is

obvious to see that V̂0 will converge to one upper bound for the true value as K → +∞.

Furthermore, we may construct a confidence interval based on V̂0 and V̂0. Let σ and

σ be the sample standard deviations of {J(l)
0 , l = 1, · · · , L} in Step 1d of Table III and

{
∑

t rt(x
k
t , a

k
t ), k = 1, · · · , K} in Step 3 of Table IV. Then, we can form the following interval:(

V̂0 − zδ/2
σ√
L
, V̂0 + zδ/2

σ√
K

)
, (53)
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with zδ being the 1 − δ quantile of the standard normal distribution. By Theorem 4.5 and
Remarks 4.6, 4.7, this interval (53) will provide a valid asymptotic confidence interval for
V0.

Table IV: Direct Policy Valuation

• Step 0. Initialization: start from the initial state x0 and choose a large number K.

• Step 1. Do for k = 1, · · · ,K

– Step 1a. Set t = 0 and let xkt = x0.

– Step 1b. At xkt , solve the best action akt , given the value function at the next step is
approximated by V̂t+1. That is,

akt = arg min
at∈At

E
[
rt(x

k
t , at, ξt) + V̂t+1(ft(x

k
t , at, ξt))

]
.

– Step 1c. Simulate ξkt and generate the state for the next step through xkt+1 =
ft(x

k
t , a

k
t , ξ

k
t ).

– Step 1d. Set t← t+ 1 and go to Step 1b until t = T .

• Step 3. Compute

V̂0(x0) :=
1

K

K∑
k=1

∑
t

rt(x
k
t , a

k
t ).

D.2 One example of exploration pitfall

As noted in Section 4, the state sampler G is crucial to ensure the convergence of the DDP
algorithm. This subsection presents one example to illustrate a possible exploration pitfall if
we use a policy-dependent sampler to draw the states on which we estimate the dual values.

Consider the following 2-period SDP problem:

min
u

E
[ 2∑
t=0

−(xt − 10)+|x0 = x
]
.

Here, the control ut can only be taken from the set {0, 1, 2} and the dynamic satisfies

xt+1 = 20 + 10ut(ut − 2)− utξt =


20, ut = 0
10− ξt, ut = 1
20− 2ξt, ut = 2

.

The random noise ξt follows the uniform distribution U(0, 10). It is easy to see that the
optimal value functions of the problem at t = 0, 1, 2 are given by

V2(x) = −(x− 10)+, V1(x) = −10− (x− 10)+, and V0(x) = −20− (x− 10)+,
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respectively. And the corresponding optimal policy is ut(x) = 0 for all t and x.
Suppose that the set of basis functions we take is

Ψ(x) = [ψ1(x), ψ2(x), ψ3(x)] := [1, x, (10− x)+].

And we are given by an initial policy ut = 1 for all t = 0, 1, 2; that is, the policy always
selects the action of 1 no matter what state and period the planner is at. Instead of using an
independent state sampler as suggested in Step0a of Table III, let us consider the situation
that we rely on such u to drive the system to obtain the states that we may estimate the
dual values later. Denote them by (x

(1)
t , · · · , x(L)

t ), t = 0, 1, 2. Note that all of them are in
(0, 10).

Evaluating the value of this policy on these states, we know that all the values are
V̂0
t (x

(l)
t ) = 0. If we use the regression technique to extrapolate these values to the entire

state space, we need to solve

inf
β

1

L

L∑
l=1

(
Ψ(xlt)β − V̂

0

t (x
l
t)
)2

(54)

for the regression coefficients β̂0
t . It is easy to see that this is an underdetermined problem

in the sense that infinitely many β are the minimizer of the term on the right hand side of
(54).

Take one solution β̂0
t,i = 0 with i = 1, 2, 3 for all t; that is, we extrapolate V̂0

t (x) = 0 to
the entire space as the approximate value used in Step 1a of Table III. Substitute it into the
expression of the penalty. Following Step 1b in Table III, we solve the inner optimization
problem (25-26) at x

(l)
t ∈ (0, 10) and obtain

J
(l)
0,1 = −20, J

(l)
1,1 = −10, J

(l)
2,1 = 0. (55)

Note that all these values have nothing to do with the random noise ξ. Use J
(l)
1,1 as an example

to explain how the above is calculated. As V̂
0

t (x) = 0 for all t, the penalty function z1
t (u, ξ)

should also be zero. Then

J
(l)
1,1(x

(l)
1 , ξ

(l),1
1 ) = inf

u1
{−(x

(l)
1 − 10)+ − (x

(l)
2 − 10)+}

= inf
u1
{−(x

(l)
1 − 10)+ − (20 + 10u1(u1 − 2)− u1ξ

(l),1
1 − 10)+}.

Apparently, u1 = 0 is the optimal solution to this inner optimization problem. We thus have

J
(l)
1,1(x

(l)
1 , ξ

(l),1
1 ) = (x

(l)
1 − 10)+ − 10 = −10

because x
(l)
1 ∈ (0, 10).

Under (55), after we fit these values using the basis functions according to the Step 1c
in Table III, we know that

β̂1
0 = [−20, 0, 0], β̂1

1 = [−10, 0, 0], β̂1
2 = [0, 0, 0].
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That is,
V̂1

0(x) = −20, V̂1
1(x) = −10, V̂1

2(x) = 0

for all x. Repeat the calculation for more rounds of dual operation and we find that the dual
value will not change, i.e., V̂n

t (x) = V̂1
t (x) for all x and t = 0, 1, 2. No convergence to the

optimal value function will occur.
The above example shows that using control policies to generate the representative states

may lead our DDP algorithm to be stuck in a suboptimal solution. The cause is that all the
sampled states we select at the beginning are in (0, 10) and no one falls in (10, 20), the other
part of the state space. Lacking the related information in (10, 20), the extrapolation from
the regression cannot produce correct estimation for the value in that interval.

D.3 Proof of Theorem 4.5

Now we turn to prove Theorem 4.5. Below we will use C to represent a generic constant,
which is independent of M and L. Note that it may change step by step. In the theorem
statement, we also use the following concept of Lebesgue constant. Consider a sequence of
basis functions {ψm(x),m ≥ 1}. Given a function f such that ‖f‖∞ 6= 0 and ‖f‖∞ < ∞,
we use the standard least square method to find a proper expansion of {ψm(x),m ≥ 1} to
approximate f ; that is, let

β̂f = arg min
α

EG[‖f(x)−Ψtr
M(x)α‖2]

and then f ≈ Ψtr
M β̂f .

Definition D.1 (Lebesgue constant) Define

lM = sup

{
‖Ψtr

M(x)β̂f‖∞
‖f‖∞

: ‖f‖∞ 6= 0, ‖f‖∞ <∞

}
. (56)

D.3.1 Technical Lemmas

We need to establish several lemmas first.

Lemma D.2 For any function f(x) and g(x),

inf
x

(f(x) + g(x)) ≥ inf
x
f(x) + inf

x
g(x)

and
inf
x
f(x)− inf

x
g(x) ≥ inf

x
(f(x)− g(x)).

Lemma D.3 For any x, y ∈ R, let constant

K ≥ |y|.

Then we have ∣∣∣max
{
−K,min

{
K, x

}}
− y
∣∣∣ ≤ ∣∣∣x− y∣∣∣.
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Proof of Lemma D.3. It can be easily verified . �

From Assumption 4.1 and 4.2, we can establish the non-multicollinearity of basis functions
as shown in the following lemma.

Lemma D.4 Under Assumption 4.1 and 4.2, the smallest eigenvalue of matrix Bt
ψψ is

bounded away from zero uniformly in M .

Proof of Lemma D.4. Note that Bt
ψψ = EG[Ψ(Xt)Ψ

tr(Xt)] is a nonnegative definite matrix.
Thus, its smallest eigenvalue satisfies

λmin(Bt
ψψ) = min

||w||2=1
wtrEG[Ψ(Xt)Ψ

tr(Xt)]w. (57)

Moreover, by Assumption 4.2, there exists an ε > 0 such that dG/dF (x) > ε for x ∈ X . We
have

EG[Ψ(Xt)Ψ
tr(Xt)] =

∫
Rn

Ψ(x)Ψtr(x)
dG

dF
(x)dF (x) ≥ ε

∫
Rn

Ψ(x)Ψtr(x)dF (x). (58)

The orthogonality of the basis functions in Assumption 4.1 implies that the right hand side
of the above inequality is given by ε ·I, where I is an identity matrix. For any vector w ∈ Rn,
the inequality (58) implies that

wtrEG[Ψ(Xt)Ψ
tr(Xt)]w ≥ εwtrw.

In conjunction with (57), we have

λmin(Bt
ψψ) ≥ ε.�

Consider one sequence of i.i.d. random vectors X1, · · · , XL ∈ Rd and another sequence of
i.i.d. random variables Y1, · · · , YL ∈ R. Suppose that all of (Xi)1≤i≤L are square integrable
and their second moments are bounded above by a constant. Furthermore, (Yi)1≤i≤L is
assumed to be essentially bounded, i.e., there exists ‖Y ‖∞ such that

max
1≤i≤L

|Yi| ≤ ‖Y ‖∞.

Then, we have

Lemma D.5 There exists a constant C, independent of L and d, such that

E
[∥∥∥ 1

L

L∑
l=1

XlYl − E[XlYl]
∥∥∥

2

]
≤ C
√
d√
L

∥∥∥Y ∥∥∥
∞
.

Proof of Lemma D.5. Let Xk
l denote the k-th element of vector Xl. According to Jensen’s

inequality,

E
[∥∥∥ 1

L

L∑
l=1

XlYl − E[XlYl]
∥∥∥

2

]
= E

[{ d∑
k=1

( 1

L

L∑
l=1

Xk
l Yl − E[Xk

l Yl]
)2}1/2]

≤
{
E
[ d∑
k=1

( 1

L

L∑
l=1

Xk
l Yl − E[Xk

l Yl]
)2]}1/2

.
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Observe that

E
[( 1

L

L∑
l=1

Xk
l Yl − E[Xk

l Yl]
)2]

=
1

L2

L∑
l=1

E
[(
Xk
l Yl − E[Xk

l Yl]
)2]

.

Each summand on the right hand side of above equality satisfies

E
[(
Xk
l Yl − E[Xk

l Yl]
)2]
≤ E

[(
Xk
l Yl

)2]
≤ C

∥∥∥Y ∥∥∥2

∞
,

if we take
C = max

1≤k≤d
E[(Xk

l )2].

Accordingly, we have

E
[∥∥∥ 1

L

L∑
l=1

XlYl − E[XlYl]
∥∥∥

2

]
≤ C
√
d√
L

∥∥∥Y ∥∥∥
∞
.�

The next lemma gives bound on the probability that the sample matrix B̂t,n
ψψ deviates from

its mean Bt
ψψ. More precisely, given a δ > 0, for any time t and iteration n, let

Ant (δ) = {‖I − (Bt
ψψ)−1B̂t,n

ψψ‖2 ≥ δ},

where I is the identity matrix. We have

Lemma D.6 There exists a constant C, independent of M and L, such that for any δ,

P(Ant (δ)) ≤ 2M exp{− Lδ2

CM2
}.

Proof of Lemma D.6. It is Lemma 2.1 in Chen and Christensen (2015). This inequality is
also known as the matrix Bernstein inequality in the literature; see also Tropp (2012). �

In the following lemma we develop an upper bound estimate on the distance between sample
value Jt,n(ξ|t, x) and the optimal value Vt(x). To be more precisely,

Lemma D.7 Given the initial state xt = x and the truncated randomness sequence ξ|t =
(ξt, · · · , ξT−1), the corresponding optimization problem Jt,n(ξ|t, x), satisfies

∥∥∥Jt,n(ξ|t, x)− Vt(x)
∥∥∥
∞
≤ 2

T∑
s=t+1

∥∥∥V̂n−1

s (x)− Vs(x)
∥∥∥
∞
.

Proof of Lemma D.7. Recall that Jt,n(ξ|t, x) is defined by

Jt,n(ξ|t, x) = inf
a∈A|t

( T−1∑
s=t

rs(xs, as, ξs) + rT (xT ) + znt (a, ξ)
)
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with

znt (a, ξ) =
T−1∑
s=t

{
E
[
rs(xs, as, ξs) + V̂

n−1

s+1 (xs+1)
]
−
(
rs(xs, as, ξs) + V̂

n−1

s+1 (xs+1)
)}
.

Following similar arguments as the proof of Lemma A.1, we can show that Jt,n admits the
following recursive representation:

Jt,n(ξ|t, x) = infa∈At

(
E[rt(xt, a, ξt) + V̂

n−1

t+1 (ft(x, a, ξt))]− V̂
n−1

t+1 (ft(x, a, ξt)) + Jt+1,n(ξ|t+ 1, f(x, a, ξt))
)
.

By Lemma D.2, we know that

Jt,n(ξ|t, x)

≥ infa∈At E
[
rt(xt, a, ξt) + V̂

n−1

t+1 (ft(x, a, ξt))
]

+ infa∈A|t

{
Jt+1,n(ξ|t+ 1, f(x, a, ξt))− V̂

n−1

t+1 (ft(x, a, ξt))
}
,

=: J1 + J2. (59)

Consider the part of J1 on the right hand side of (59). Note that Vt(x) satisfies the
Bellman equation,

Vt(x) = inf
a∈At

E
[
rt(x, a, ξt) + Vt+1(ft(x, a, ξt))

]
. (60)

Then, the difference between J1 and Vt(x) should be

J1 − Vt(x)

= inf
a∈At

E
[
rt(xt, a, ξt) + V̂

n−1

t+1 (ft(x, a, ξt))
]
− inf

a∈At

E
[
rt(x, a, ξt) + Vt+1(ft(x, a, ξt))

]
≥ inf

a∈At

E
[
V̂
n−1

t+1 (ft(x, a, ξt))− Vt+1(ft(x, a, ξt))
]
,

where the inequality in the last line is because of Lemma D.2. Furthermore, since ft(x, a, ξt) ∈
X for any state x, action a and random noise ξt, we have

V̂
n−1

t+1 (ft(x, a, ξt))− Vt+1(ft(x, a, ξt)) ≥ − sup
x∈X

∣∣∣V̂n−1

t+1 (x)− Vt+1(x)
∣∣∣ = −

∥∥∥V̂n−1

t+1 (x)− Vt+1(x)
∥∥∥
∞
.

Taking expectation with respect to ξt and taking infimum over all possible actions a ∈ At
on both side of above inequality will lead to

inf
a∈At

E
[
V̂
n−1

t+1 (ft(x, a, ξt))− Vt+1(ft(x, a, ξt))
]
≥ −

∥∥∥V̂n−1

t+1 (x)− Vt+1(x)
∥∥∥
∞
.

That implies,

J1 − Vt(x) ≥ −
∥∥∥V̂n−1

t+1 (x)− Vt+1(x)
∥∥∥
∞
. (61)

Next we turn to J2, the second part on the right hand of (59). Substitute the definition
of Jt+1,n(ξ|t+ 1, f(x, a, ξt)) into J2. After some term rearrangements, we obtain

J2 = inf
a∈A|t

{
Jt+1,n(ξ|t+ 1, f(x, a, ξt))− V̂

n−1

t+1 (ft(x, a, ξt))
}

= inf
a∈A|t

{ T−1∑
s=t+1

(
E
[
rs(xs, as, ξs) + V̂

n−1

s+1 (xs+1)
]
− V̂

n−1

s (xs)
)

+
(
rT (xT )− V̂

n−1

T (xT )
)}
.

(62)
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Applying Lemma D.2 to the first term on the right hand side of the above equality,

inf
a∈A|t

{ T−1∑
s=t+1

(
E
[
rs(xs, as, ξs) + V̂

n−1

s+1 (xs+1)
]
− V̂

n−1

s (xs)
)}

≥
T−1∑
s=t+1

inf
a∈A|t

{
inf
a∈As

E
[
rs(xs, a, ξs) + V̂

n−1

s+1 (fs(xs, a, ξs))
]
− V̂

n−1

s (xs)
}

≥
T−1∑
s=t+1

inf
x∈X

{
inf
a∈As

E
[
rs(x, a, ξs) + V̂

n−1

s+1 (fs(x, a, ξs))
]
− V̂

n−1

s (x)
}
. (63)

Here the last inequality is obvious because every summand of the sum in the second line, as
a function of state variable x, is bounded below by its minimum over the space X . Similarly,
we have

rT (xT )− V̂
n−1

T (xT ) ≥ inf
x∈X

{
rT (x)− V̂

n−1

T (x)
}
. (64)

From (62-64),

J2 ≥
∑T−1

s=t+1 infx∈X

{
infa∈As E

[
rs(x, a, ξs) + V̂

n−1

s+1 (fs(x, a, ξs))
]
− V̂

n−1

s (x)
}

+ infx∈X

{
rT (x)− V̂

n−1

T (x)
}
.(65)

We add and subtract the optimal value function V simultaneously in every summand of
the sum on the right hand side of (65). This operation will not change its value. That is,

inf
x∈X

{
inf
a∈As

E
[
rs(x, a, ξs) + V̂

n−1

s+1 (fs(x, a, ξs))
]
− V̂

n−1

s (x)
}

= inf
x∈X

{
inf
a∈As

E
[
rs(x, a, ξs) + Vs+1(fs(x, a, ξs)) +

(
V̂
n−1

s+1 (fs(x, a, ξs))− Vs+1(fs(x, a, ξs))
)]

−Vs(x) +
(
Vs(x)− V̂

n−1

s (x)
)}

≥ infx∈X

{
infa∈As E

[
rs(x, a, ξs) + Vs+1(fs(x, a, ξs))

]
− Vs(x)

}
+ infx∈X

{
infa∈As

(
V̂
n−1

s+1 (fs(x, a, ξs))− Vs+1(fs(x, a, ξs))
)}

+ inf
x∈X

(
Vs(x)− V̂

n−1

s (x)
)
, (66)

where we use Lemma D.2 again to obtain the last inequality. Thanks to the Bellman equa-
tion, we know that the first term on the right hand side of the inequality (66) is 0. In
addition, following similar arguments leading to (61), we can establish

inf
x∈X

{
inf
a∈As

(
V̂
n−1

s+1 (fs(x, a, ξs))− Vs+1(fs(x, a, ξs))
)}
≥ −

∥∥∥V̂n−1

s+1 (x)− Vs+1(x)
∥∥∥
∞

and
inf
x∈X

(
Vs(x)− V̂

n−1

s (x)
)
≥ −

∥∥∥V̂n−1

s (x)− Vs(x)
∥∥∥
∞
.

As a consequence, we have

infx∈X

{
infa∈As E

[
rs(x, a, ξs) + V̂

n−1

s+1 (fs(x, a, ξs))
]
− V̂

n−1

s (x)
}
≥ −

∥∥∥V̂n−1

s (x)− Vs(x)
∥∥∥
∞
−
∥∥∥V̂n−1

s+1 (x)− Vs+1(x)
∥∥∥
∞
.
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Summing the above inequality over s = t+ 1 to T − 1, (65) implies that

J2 ≥ −2
T∑

s=t+2

‖V̂
n−1

s (x)− Vs(x)‖∞ − ‖V̂
n−1

t+1 (x)− Vt+1(x)‖∞. (67)

Hence,

Jt,n(ξ|t, x)− Vt(x) = J1 − Vt(x) + J2 ≥ −2
T∑

s=t+1

‖V̂
n−1

s (x)− Vs(x)‖∞.

To finish the proof, we need to derive the upper bound for Jt,n(ξ|t, x) − Vt(x). By
Assumption 4.4, let a∗(x) be the optimal solution to the Bellman equation; that is,

a∗t = arg inf
a∈At

E
[
rt(xt, a, ξt) + Vt+1(xt+1)

∣∣∣xt = x
]
.

Such a policy a∗t (x) must be a suboptimal solution to the optimization in the definition of
Jt,n(ξ|t, x). Therefore,

Jt,n(ξ|t, x) ≤
T−1∑
s=t

{
E
[
rs(x

∗
s, a
∗
s(x
∗
s), ξs) + V̂

n−1

s+1 (x∗s+1)
]
− V̂

n−1

s+1 (x∗s+1)
}

+ rT (x∗T ), (68)

with x∗t+1 = ft(x
∗
t , a
∗
t (x
∗
t ), ξt). On the other hand, we may rewrite Vt(x

∗
t ) using the following

telescoping sum:

Vt(x
∗
t ) =

T−1∑
s=t

{
Vs(x

∗
s)− Vs+1(x∗s+1)

}
+ rT (x∗T ).

Note that VT (·) ≡ rT (·). By the Bellman equation, for all s = t, · · · , T1 and x∗s,

Vs(x
∗
s) = E

[
rs(x

∗
s, a
∗
s(x
∗
s), ξs) + Vs+1(x∗s+1)

]
.

Therefore,

Vt(x
∗
t ) =

T−1∑
s=t

{
E
[
rs(x

∗
s, a
∗
s(x
∗
s), ξs) + Vs+1(x∗s+1)

]
− Vs+1(x∗s+1)

}
+ rT (x∗T ). (69)

Subtract the above two relation (68) and (69),

Jt,n(ξ|t, x∗t )− Vt(x∗t )

≤
T−1∑
s=t

{
E
[
V̂
n−1

s+1 (x∗s+1)− Vs+1(x∗s+1)
]

+ Vs+1(x∗s+1)− V̂
n−1

s+1 (x∗s+1)
}
.

Following the similar procedures leading to (61), for t ≤ s ≤ T − 1, we can show that

E
[
V̂
n−1

s+1 (x∗s+1)− Vs+1(x∗s+1)
]
≤
∥∥V̂n−1

s+1 (x)− Vs+1(x)
∥∥
∞
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and
Vs+1(x∗s+1)− V̂

n−1

s+1 (x∗s+1) ≤
∥∥Vs+1(x)− V̂

n−1

s+1 (x)
∥∥
∞.

Consequently, we have

Jt,n(ξ|t, x)− Vt(x) ≤ 2
T∑

s=t+1

∥∥∥V̂n−1

s (x)− Vs(x)
∥∥∥
∞
.

In summary, the combination of these two bounds implies

∥∥∥Jt,n(ξ|t, x)− Vt(x)
∥∥∥
∞
≤ 2

T∑
s=t+1

∥∥∥V̂n−1

s (x)− Vs(x)
∥∥∥
∞
.�

From the Lemma D.7, it turns out that

Corollary D.8 Let
Vn
t (x) = E[Jt,n(ξ|t, x)].

Then we have

‖Vn
t (x)− Vt(x)‖∞ ≤ 2

T∑
s=t+1

‖V̂
n−1

s (x)− Vs(x)‖∞. (70)

Proof of Corollary D.8. This can be easily verified by Jensen’s inequality. �

In the next lemma, we attempt to bound the sampling error

‖Ψtr
M(x)β̂nt −Ψtr

M(x)βnt ‖∞

when B̂t,k
ψψ gives a “good” approximation to Bt

ψψ. To be precise, define event A(δ, n) to be

A(δ, n) =
⋃

1≤k≤n,
T−k+1≤t≤T

Akt (δ) =
⋃

1≤k≤n,
T−k+1≤t≤T

{‖I − (Bt
ψψ)−1B̂t,k

ψψ‖2 ≥ δ}.

Lemma D.9 Let

δ =
1

2M1/2L1/4

in the above definition of A(δ, n). There exists a constant C, independent of M and L, such
that for 1 ≤ n ≤ T and T − n+ 1 ≤ t ≤ T ,

E
[
1A(δ,n)c ·

∥∥∥Ψtr
M(x)(β̂nt − βt)

∥∥∥
∞

]
≤ C

(M3/2

L1/4

)
E
[∥∥∥Jt,n(ξ|t, x)

∥∥∥
∞
· 1A(δ,n−1)c

]
.
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Proof of Lemma D.9. Recall that if A is a real symmetric matrix, then all the eigenvalues of
this matrix is real. In this proof, we use λmax(A) and λmin(A) to denote the maximum and

minimum eigenvalue for a general symmetric A. By the definitions of β̂nt and βnt , we have

β̂nt = (B̂t,n
ψψ)−1 · 1

L

L∑
l=1

ΨM(x
(l)
t,n)J

(l)
t,n and βnt = (Bt

ψψ)−1E[ΨM(x
(l)
t,n)J

(l)
t,n].

Hence,

Ψtr
M(x)(β̂nt − βnt ) = Ψtr

M(x)(B̂t,n
ψψ)−1 1

L

L∑
l=1

ΨM(x
(l)
t,n)J

(l)
t,n −Ψtr

M(x)(Bt
ψψ)−1E[ΨM(x

(l)
t,n)J

(l)
t,n].

We simultaneously add and subtract

Ψtr
M(x)(Bt

ψψ)−1 1

L

L∑
l=1

ΨM(x
(l)
t,n)J

(l)
t,n

on the right hand side of the above equality. That results in

Ψtr
M(x)(β̂nt − βnt )

= Ψtr
M(x)

[
(B̂t,n

ψψ)−1 − (Bt
ψψ)−1

]
1
L

∑L
l=1 ΨM(x

(l)
t,n)J

(l)
t,n + Ψtr

M(x)(Bt
ψψ)−1

{
1
L

∑L
l=1 ΨM(x

(l)
t,n)J

(l)
t,n − E[ΨM(x

(l)
t,n)J

(l)
t,n]
}
.

Then the triangle inequality implies

‖Ψtr
M(x)(β̂nt − βnt )‖∞ ≤ ε

(1)
t,n + ε

(2)
t,n,

where ε
(1)
t,n and ε

(2)
t,n are defined as

ε
(1)
t,n = sup

x∈X

∣∣∣Ψtr
M(x)

[
(B̂t,n

ψψ)−1 − (Bt
ψψ)−1

] 1

L

L∑
l=1

ΨM(x
(l)
t,n)J

(l)
t,n

∣∣∣
and

ε
(2)
t,n = sup

x∈X

∣∣∣Ψtr
M(x)(Bt

ψψ)−1
{ 1

L

L∑
l=1

ΨM(x
(l)
t,n)J

(l)
t,n − E[ΨM(x

(l)
t,n)J

(l)
t,n]
}∣∣∣.

By the Cauchy-Schwartz inequality, it is easy to see that ε
(1)
t,n is bounded by

ε
(1)
t,n ≤

1

L

L∑
l=1

sup
x∈X

∣∣∣Ψtr
M(x)

[
(B̂t,n

ψψ)−1 − (Bt
ψψ)−1

]
ΨM(x

(l)
t,n)J

(l)
t,n

∣∣∣
≤ 1

L

L∑
l=1

sup
x∈X

∥∥∥Ψtr
M(x)

∥∥∥
2
·
∥∥∥(B̂t,n

ψψ)−1 − (Bt
ψψ)−1

∥∥∥
2
·
∥∥∥ΨM(x

(l)
t,n)J

(l)
t,n

∥∥∥
2
. (71)

Under Assumption 4.3, there exists a constant C such that

sup
x∈X
‖Ψtr

M(x)‖2 ≤ CM.
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We next develop an upper bound for the last term on the right hand side of (71). Note that

∥∥∥ΨM(x
(l)
t,n)J

(l)
t,n

∥∥∥
2

=
[ M∑
m=1

(
ψm(x

(l)
t,n)J

(l)
t,n

)2
] 1

2 ≤
[ M∑
m=1

(
ψm(x

(l)
t,n

)2
] 1

2 ·
∥∥∥Jt,n(ξ|t, x)

∥∥∥
∞
.

By Assumption 4.3, [ M∑
m=1

(
ψm(x

(l)
t,n)
)2
] 1

2 ≤ CM.

Hence, ∥∥∥ΨM(x
(l)
t,n)J

(l)
t,n

∥∥∥
2
≤ CM

∥∥∥Jt,n(ξ|t, x)
∥∥∥
∞
. (72)

To bound
‖(B̂t,n

ψψ)−1 − (Bt
ψψ)−1‖2,

by Cauchy-Schwarz inequality,∥∥∥(B̂t,n
ψψ

)−1

−
(
Bt
ψψ

)−1∥∥∥
2

=
∥∥∥(I − (Bt

ψψ)−1B̂t,n
ψψ

)(
(Bt

ψψ)−1B̂t,n
ψψ

)−1(
Bt
ψψ

)−1∥∥∥
2

≤
∥∥∥I − (Bt

ψψ)−1B̂t,n
ψψ

∥∥∥
2
·
∥∥∥((Bt

ψψ)−1B̂t,n
ψψ

)−1∥∥∥
2
·
∥∥∥(Bt

ψψ

)−1∥∥∥
2
.

From the definition of A(δ, n), we know that∥∥∥I − (Bt
ψψ)−1B̂t,n

ψψ

∥∥∥
2
≤ (2M1/2L1/4)−1 (73)

on the set of A(δ, n)c. Using Example 5.6.6 in Horn and Johnson (2003),∥∥∥(Bt
ψψ

)−1∥∥∥
2

= λmax

((
Bt
ψψ

)−1
)

=
1

λmin(Bt
ψψ)

.

As for ∥∥∥((Bt
ψψ)−1B̂t,n

ψψ

)−1∥∥∥
2
,

it is well known that

λmin((Bt
ψψ)−1B̂t,n

ψψ) = min
‖w‖=1

wtr(Bt
ψψ)−1B̂t,n

ψψw; (74)

see Theorem 4.2.2 in Horn and Johnson (2003). For any vector w with ‖w‖ = 1,

wtr(Bt
ψψ)−1B̂t,n

ψψw = wtrIw + wtr((Bt
ψψ)−1B̂t,n

ψψ − I)w = 1− wtr(I − (Bt
ψψ)−1B̂t,n

ψψ)w,

where I is an identity matrix. Hence,

min
‖w‖=1

wtr(Bt
ψψ)−1B̂t,n

ψψw = 1− max
‖w‖=1

wtr(I − (Bt
ψψ)−1B̂t,n

ψψ)w. (75)
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On the other hand, it is easy to show that

max
‖w‖=1

wtr(I − (Bt
ψψ)−1B̂t,n

ψψ)w = ‖I − (Bt
ψψ)−1B̂t,n

ψψ)‖2. (76)

Combining (73-76) yields

1A(δ,n)c · λmin((Bt
ψψ)−1B̂t,n

ψψ) ≥ 1A(δ,n)c · (1− (2M1/2L1/4)−1) ≥ 1

2
· 1A(δ,n)c . (77)

where the last inequality is due to the fact that M,L ≥ 1. Thus,

1A(δ,n)c ·
∥∥∥(B̂t,n

ψψ

)−1

−
(
Bt
ψψ

)−1∥∥∥
2
≤ 1A(δ,n)c ·

1

λmin(Bt
ψψ)M1/2L1/4

. (78)

By (71), (72), and (78), we have

E
[
ε

(1)
t,n · 1A(δ,n)c

]
≤ CM3/2

λmin(Bt
ψψ)L1/4

E
[∥∥∥Jt,n(ξ|t, x)

∥∥∥
∞
· 1A(δ,n)c

]
.

From Lemma D.4, λmin(Bt
ψψ) is bounded below by some constant. Therefore, the right hand

side of the above inequality is further bounded by

C
M3/2

L1/4
E
[∥∥∥Jt,n(ξ|t, x)

∥∥∥
∞
· 1A(δ,n−1)c

]
,

if we change the constant properly.
Using Cauchy-Schwartz inequality again, ε

(2)
t,n satisfies

ε
(2)
t,n ≤ sup

x∈X

∥∥∥Ψtr
M(x)

∥∥∥
2
·
∥∥∥(Bt

ψψ)−1
∥∥∥

2
·
∥∥∥ 1

L

L∑
l=1

ΨM(x
(l)
t,n)J

(l)
t,n − E[ΨM(x

(l)
t,n)J

(l)
t,n]
∥∥∥

2
.

Let Dt,n denote the last term of right hand side in above inequality. Note that

sup
x∈X
‖Ψtr

M(x)‖2 ≤ CM

by Assumption 4.3 and
‖(Bt

ψψ)−1‖2 = λ−1
min(Bt

ψψ).

We have

ε
(2)
t,n ≤

CM

λmin(Bt
ψψ)
·Dt,n.

The definition of A(δ, n) implies that

A(δ, n)c ⊆ A(δ, n− 1)c.

Therefore,

E
[
ε

(2)
t,n · 1A(δ,n)c

]
≤ E

[
ε

(2)
t,n · 1A(δ,n−1)c

]
≤ CM

λmin(Bt
ψψ)
· E
[
Dt,n · 1A(δ,n−1)c

]
. (79)
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Let Gn be a σ-algebra defined as follows,

Gn = σ
({

(x
(1)
t,k , · · · , x

(L)
t,k ), (ξ(l)|t)

}
, 1 ≤ k ≤ n

)
.

By the iterated law of conditional expectation, the expectation term on the right hand side
of (79) equals

E
[
Dt,n · 1A(δ,n−1)c

]
= E

[
E
[
Dt,n · 1A(δ,n−1)c

∣∣∣Gn−1

]]
. (80)

Since the event A(δ, n− 1)c is measurable with respect to Gn−1, we have

E
[
Dt,n · 1A(δ,n−1)c

]
= E

[
E
[
Dt,n

∣∣∣Gn−1

]
· 1A(δ,n−1)c

]
. (81)

Following the proof of Lemma D.5, we can show

E
[
Dt,n

∣∣∣Gn−1

]
≤ C
√
M√
L

∥∥∥Jt,n(ξ|t, x)
∥∥∥
∞
. (82)

In light of (79-82),

E
[
ε

(2)
t,n · 1A(δ,n)c

]
≤ C

M3/2

λmin(Bt
ψψ)
√
L
E
[∥∥∥Jt,n(ξ|t, x)

∥∥∥
∞
· 1A(δ,n−1)c

]
.

Using again the fact that λmin(Bt
ψψ) is bounded below, the right hand side of above can

be bounded by

C
M3/2

√
L

E
[∥∥∥Jt,n(ξ|t, x)

∥∥∥
∞
· 1A(δ,n−1)c

]
,

by changing constant C properly. Finally we put the upper bounds of ε
(1)
t,n and ε

(2)
t,n together

to conclude

E
[
1A(δ,n)c ·

∥∥∥Ψtr
M(x)(β̂nt − βt)

∥∥∥
∞

]
≤ C

(M3/2

L1/4

)
E
[∥∥∥Jt,n(ξ|t, x)

∥∥∥
∞
· 1A(δ,n−1)c

]
.�

D.3.2 Proof of Theorem 4.5

Let

δ =
1

2M1/2L1/4

as in Lemma D.9 and define A(δ, T ) accordingly. We decompose

E
[∣∣∣V̂T+1

0 (x)− V0(x)
∣∣∣] = E

[
1A(δ,T ) ·

∣∣∣V̂T+1

0 (x)− V0(x)
∣∣∣]+ E

[
1A(δ,T )c ·

∣∣∣V̂T+1

0 (x)− V0(x)
∣∣∣].

Step 1. We plan to develop a bound for

E
[
1A(δ,T ) ·

∣∣∣V̂T+1

0 (x)− V0(x)
∣∣∣].
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To this end, according to Lemma D.6,

P(A(δ, T )) ≤
∑

1≤n≤T,
T−n+1≤t≤T

P(‖I − (Bt
ψψ)−1B̂t,n

ψψ‖2 ≥ δ) ≤ T (T + 1)M exp

(
− L1/2

CM3

)
.

Since V0(x) is bounded by Assumption 4.4 and V̂
T+1

0 (x) is also truncated by pre-specified
constant K as stated in Section D.1, there should exist a constant C such that

E[1A(δ,T ) · |V̂
T+1

0 (x)− V0(x)|] ≤ CP(A(δ, T )) ≤ CT (T + 1)M exp

(
− L1/2

CM3

)
. (83)

Step 2. We intend to establish the relationship between ‖V̂
n

t (x)− Vt(x)‖∞ and ‖V̂
n−1

t (x)−
Vt(x)‖∞ for 1 ≤ n ≤ T and T − n+ 1 ≤ t ≤ T . Our claim is that

E
[
1A(δ,n)c‖V̂

n

t (x)− Vt(x)‖∞
]

≤ (1 + lM)∆ + C
M3/2

L1/4
+ (2lM + C

M3/2

L1/4
)

T∑
s=t+1

E[1A(δ,n−1)c‖V̂
n−1

s (x)− Vs(x)‖∞]. (84)

To show this, by adding and subtracting the term Ψtr
M(x)βnt at the same time within

‖V̂
n

t (x)− Vt(x)‖∞, we have∥∥∥V̂n

t (x)− Vt(x)
∥∥∥
∞

=
∥∥∥Ψtr

M(x)β̂nt − Vt(x)
∥∥∥
∞

=
∥∥∥(Ψtr

M(x)β̂nt −Ψtr
M(x)βnt

)
+
(

Ψtr
M(x)βnt − Vt(x)

)∥∥∥
∞
.

Then, according to the triangle inequality,∥∥∥V̂n

t (x)− Vt(x)
∥∥∥
∞
≤
∥∥∥Ψtr

M(x)β̂nt −Ψtr
M(x)βnt

∥∥∥
∞

+
∥∥∥Ψtr

M(x)βnt − Vt(x)
∥∥∥
∞
. (85)

Note that Lemma D.9 provides the upper bound on E[1A(δ,n)c‖Ψtr
M(x)β̂nt − Ψtr

M(x)βnt ‖∞].
Henceforth we only need to consider how to bound the second part in right hand side of
(85).

Let
βt = arg min

α
EG[(Vt(x)−Ψtr

M(x)α)2].

We add and subtract the term Ψtr
M(x)βt simultaneously in the next equation and use the

triangle inequality again,∥∥∥Ψtr
M(x)βnt − Vt(x)

∥∥∥
∞

=
∥∥∥(Ψtr

M(x)βnt −Ψtr
M(x)βt

)
+
(

Ψtr
M(x)βt − Vt(x)

)∥∥∥
∞

≤
∥∥∥Ψtr

M(x)βnt −Ψtr
M(x)βt

∥∥∥
∞

+
∥∥∥Ψtr

M(x)βt − Vt(x)
∥∥∥
∞
. (86)

Under the basis function set ΨM(x), Ψtr
M(x)(βnt −βt) is the least square estimation of function

Vn
t (x)− Vt(x). Recall the definition of lM in (56). Then

‖Ψtr
M(x)βnt −Ψtr

M(x)βt‖∞ ≤ lM‖Vn
t (x)− Vt(x)‖∞.

60



To bound ‖Ψtr
M(x)βt − Vt(x)‖∞, Lemma 2.4 in Chen and Christensen (2015) shows that

‖Ψtr
M(x)βt − Vt(x)‖∞ ≤ (lM + 1)∆,

with ∆ representing the approximation error as defined in the Theorem statement.
Therefore ‖Ψtr

M(x)βnt − Vt(x)‖∞ satisfies

‖Ψtr
M(x)βnt − Vt(x)‖∞ ≤ lM‖Vn

t (x)− Vt(x)‖∞ + (lM + 1)∆. (87)

From Lemma D.9, relationship (85) and (87), we have

E
[
1A(δ,n)c‖V̂

n

t (x)− Vt(x)‖∞
]

(88)

≤ C
M3/2

L1/4
E
[
‖Jt,n(ξ|t, x)‖∞1A(δ,n−1)c

]
+ lME

[
1A(δ,n)c‖Vn

t (x)− Vt(x)‖∞
]

+ (lM + 1)∆.

We need to bound each term in the last line of above inequality. According to the Corollary
D.8, we have

E
[∥∥∥Vn

t (x)− Vt(x)
∥∥∥
∞
· 1A(δ,n)c

]
≤ 2

T∑
s=t+1

E
[∥∥∥V̂n−1

s (x)− Vs(x)
∥∥∥
∞
· 1A(δ,n−1)c

]
. (89)

For ‖Jt,n(ξ|t, x)‖∞, it satisfies∥∥∥Jt,n(ξ|t, x)
∥∥∥
∞
≤
∥∥∥Jt,n(ξ|t, x)− Vt(x)

∥∥∥
∞

+
∥∥∥Vt(x)

∥∥∥
∞
.

As the optimal value function Vt(x) is bounded on compact set X in Assumption 4.4, there
exists a constant C such that

E
[∥∥∥Jt,n(ξ|t, x)

∥∥∥
∞
· 1A(δ,n−1)c

]
≤ C + E

[∥∥∥Jt,n(ξ|t, x)− Vt(x)
∥∥∥
∞
· 1A(δ,n−1)c

]
≤ C + 2

T∑
s=t+1

E
[∥∥∥V̂n−1

s (x)− Vs(x)
∥∥∥
∞
· 1A(δ,n−1)c

]
. (90)

We combine (88-90),

E
[
1A(δ,n)c‖V̂

n

t (x)− Vt(x)‖∞
]

≤ (1 + lM)∆ + C
M3/2

L1/4
+ (2lM + C

M3/2

L1/4
)

T∑
s=t+1

E[1A(δ,n−1)c‖V̂
n−1

s (x)− Vs(x)‖∞].

Step 3. From (84) in Step 2, we use induction on n to show that for 1 ≤ t ≤ T and
n ≥ T − t+ 1,

E
[
1A(δ,n)c ·

∥∥∥V̂n

t (x)− Vt(x)
∥∥∥
∞

]
≤
(

1 + 2lM + C
M3/2

L1/4

)T−t[
(1 + lM)∆ + C

M3/2

L1/4

]
. (91)

We omit the calculation detail in the interest of space.
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Step 4. In light of the definition of V̂
T+1

0 (x),

V̂
T+1

0 (x) = max
{
−K,min

{
K,

1

L

L∑
l=1

J
(l)
0,T+1

}}
,

we choose constant K such that K ≥ |V0(x)|. According to Lemma D.3, we have∣∣∣V̂T+1

0 (x)− V0(x)
∣∣∣ ≤ ∣∣∣ 1

L

L∑
l=1

J
(l)
0,T+1 − V0(x)

∣∣∣ ≤ 1

L

L∑
l=1

∣∣∣J(l)
0,T+1 − V0(x)

∣∣∣.
Again we use the Lemma D.7,

E
[
1A(δ,T )c ·

∣∣∣V̂T+1

0 (x)− V0(x)
∣∣∣] ≤ 2

T∑
t=1

E
[
1A(δ,T )c ·

∥∥∥V̂T

t (x)− Vt(x)
∥∥∥
∞

]
. (92)

We sum the inequality (91) from t = 1 to T in iteration T and derive that

E
[
1A(δ,T )c ·

∣∣∣V̂T+1

0 (x)− V0(x)
∣∣∣] ≤ (1 + 2lM + C

M3/2

L1/4

)T[
(1 + lM)∆ + C

M3/2

L1/4

]
.

Step 5. By combining the result of (83) and (92), we conclude that

E
[∣∣V̂T+1

0 (x)−V0(x)
∣∣∣] ≤ CT (T+1)M exp

(
− L1/2

CM3

)
+
(

1+2lM+C
M3/2

L1/4

)T[
(1+lM)∆+C

M3/2

L1/4

]
.

For sufficient small α, we have

M exp
(
− L1/2

CM3

)
≤
(

1 + 2lM + C
M3/2

L1/4

)TM3/2

L1/4
.

By adjusting the constant C properly, we obtain the result in Theorem 4.5. �

E Supplementary Materials to Section 5

E.1 Optimal Order Execution Problem:

- The objective function:

It is easy to see that minimizing (33) is equivalent to minimizing

E

[
T∑
t=1

Ptr
t St − P̃tr

0 R̄

]
.

Note that the constant P̃tr
0 R̄ stands for the cost that the trader would pay for R̄ shares of

assets without the price impacts. This difference thus represents the implementation shortfall
of a specific strategy, namely how much more costs the trader may incur during the course
of fulfilling the execution target. In the following lemma, we show that it equals (34).
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Lemma E.1 For the trader’s problem

min
{St,1≤t≤T}

E

[(
T∑
t=1

Ptr
t St − P̃tr

0 R̄

)]
, (93)

subject to the constraints (30-32), it is equivalent to

min
{St,1≤t≤T}

E

[
T∑
t=1

Strt h(St) +
T−1∑
t=0

(P̃t+1 − P̃t)
trRt+1

]
.

Proof of Lemma E.1. Using the relationship (31), we observe that

T∑
t=1

Ptr
t St − P̃tr

0 R̄ =
T∑
t=1

(P̃t + h(St))
trSt − P̃tr

0 R̄

=
T∑
t=1

Strt h(St) +
T∑
t=1

P̃tr
t St − P̃tr

0 R̄. (94)

In addition, applying Abel’s summation-by-part formula to
∑T

t=1 P̃tr
t St, we know that

T∑
t=1

P̃tr
t St = P̃tr

0

(
T∑
t=1

St

)
+

T−1∑
t=0

(
(P̃t+1 − P̃t)

tr ·
T∑

j=t+1

Sj

)

= P̃tr
0 R̄ +

T−1∑
t=0

(P̃t+1 − P̃t)
trRt+1. (95)

Thus, with (94) and (95), we have

T∑
t=1

Ptr
t St − P̃tr

0 R̄ =
T∑
t=1

Strt h(St) +
T−1∑
t=0

(P̃t+1 − P̃t)
trRt+1.

This verifies the equivalence of these two objective functions. Note the new value function
doesn’t depend on the variable P. �

- The auxiliary LQC problem:

If we ignore the temporary impact h(St) and remove the nonnegative constraint St ≥ 0, the
problem (34) with the constraints (30-32) is equivalent to LQC problem. According to the
discussion in Appendix B, the value function Vt(Xt,Rt) and policy S∗t are:

Vt(Xt,Rt) = Xtr
t WtXt + Rtr

t QtRt + Rtr
t KtXt + Ht, (96)

S∗t (Xt,Rt) = (I− 1

2
Q−1
t+1A

tr)Rt +
1

2
Q−1
t+1Kt+1CXt, (97)
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with

Qt = −1

4
AQ−1

t+1A
tr +

1

2
(A + Atr), QT =

1

2
(A + Atr). (98)

Wt = CtrWt+1C−
1

4
CtrKtr

t+1Q
−1
t+1Kt+1C, WT = 0. (99)

Kt = B +
1

2
AQ−1

t+1Kt+1C, KT = B. (100)

Ht = Ht+1 + E[ηtrWt+1η], HT = 0. (101)

Specially if the matrix A is symmetric, the optimal policy (97) can be simplified as

S∗t (Xt,Rt) =
1

2
Q−1
t+1Kt+1CXt +

1

T − t+ 1
Rt.

- Parameter setting:

To illustrate the numerical results, we consider a case with three assets and a signal vector
of two variables. Assume the trader wants to buy 1×105 shares for each asset within T = 20
periods, i.e., R̄i = 1×105 for i = 1, 2, 3. The parameter matrices pertinent to the temporary
and permanent impacts are supposed to

A=
[

30 7 3
7 25 −5
3 −5 20

]
×10−6, B=

[
5 2
3 2
1 4

]
, C=δ×[ 0.8 0.1

0.2 0.6 ] , D=
[

2λ 0 0
0 2λ 0
0 0 2λ

]
×10−5, Ση=[ 1.0 0.2

0.2 0.8 ] .

Here we parametrize matrix D by λ so that we can examine the effect of the temporary price
impact on the optimal execution strategies by varying λ.

E.2 Inventory Management Problem:

- Parameters: The model parameters’ values used in the experiments are given by

h = 1, m = 4 or 9, p = 9 or 19, γ = 1, T = 30, x1 = 0.

- Basis functions:

For L = 4, we choose the basis function set as{
1, (xi,t)0≤i≤3, E[(x0,t − d̃0)+], E[((x0,t − d̃0)+ + x1,t − d̃1)+],

E[(((x0,t − d̃0)+ + x1,t − d̃1)+ + x2,t − d̃2)+], E[((((x0,t − d̃0)+ + x1t − d̃1)+ + x2,t − d̃2)+ + x3,t − d̃3)+],

E[(((x1,t − d̃1)+ + x2,t − d̃2)+ + x3,t − d̃3)+], E[((x2,t − d̃2)+ + x3,t − d̃3)+], E[(x3,t − d̃3)+]
}
.

The expectation is taken over (d̃i)0≤i≤3, which have the same distribution with dt in the
system. For L = 10, we choose 30 basis functions in similar manner as L = 4. That is,
constant 1, one order function (xi,t)0≤i≤9, the expectation in iteration form from E[(x0,t−d̃0)+]
to E[((x0,t − d̃0)+ · · · + x9,t − d̃9)+], and the reverse form from E[(x9,t − d̃9)+] to E[((x1,t −
d̃1)+ · · ·+ x9,t − d̃9)+].
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- Quasi Monte Carlo:

As mentioned in the main body, for L = 10, we choose low-discrepancy sequences to perform
the nested simulations. To illustrate this, we note that the expectation of basis functions
can be written in the form of

H(xt) = E[g(xt,d)]

for some function g(·) and where state x = [x0,t, · · · , x9,t], geometric distribution d =
[d̃0, · · · , d̃9]. Using the inverse transform approach we can easily rewrite H(xt) as

H(xt) = E[g(xt, blog(U)/ log(1− p)c)],

where U is 10-dimensional vector of independent uniform random variables in range (0, 1)
and bNc stands for the largest integer which is no bigger than N . We could perform this
expectation with respect to U by using the low discrepancy sequence. Here we choose 2047
points in Sobol sequence, U1, · · · , U2047, and approximate

H(xt) ≈
2047∑
i=1

g(xt, blog(Ui)/ log(1− p)c).

The detailed discussion about this method, one may refer to Chapter 5 in Glasserman (2004).
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